

Installation Manual
IM-DOC-017

Using DiskOnChip®
with Windows® CE
Written by: Yuval Sofer, Vadim Khmelnitsky & Esther Spanjer

JULY-2000
91-SR-005-07-7L REV. 3.2

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 2

LIMITED WARRANTY

(a) M-Systems warrants that the Licensed Software — prior to modification and adaptation by
Licensee — will conform to the documentation provided by M-Systems. M-Systems does not warrant
that the Licensed Software will meet the needs of the Licensee or of any particular customer of
Licensee, nor does it make any representations whatsoever about Licensed Software that has been
modified or adapted by Licensee.

(b) Subsection (a) above sets forth Licensee’s sole and exclusive remedies with regard to the Licensed
Software.

M-SYSTEMS MAKES NO OTHER WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT
TO THE LICENSED SOFTWARE, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO OTHER
WARRANTIES WITH RESPECT TO THE LICENSED SOFTWARE ARISING FROM ANY
COURSE OF DEALING, USAGE, OR TRADE OR OTHERWISE.

IN NO EVENT SHALL M-SYSTEMS BE LIABLE TO LICENSEE FOR LOST PROFITS OR
OTHER INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES, WHETHER UNDER THIS
AGREEMENT, IN TORT OR OTHERWISE.

(c) Licensee shall not make any promise, representation, warranty or guaranty on behalf of M-Systems
with respect to the Licensed Software except as expressly set forth herein.

PLEASE NOTE: THE LICENSED SOFTWARE IS NOT WARRANTED TO OPERATE
WITHOUT FAILURE. ACCORDINGLY, IN ANY USE OF THE LICENSED SOFTWARE IN
LIFE SUPPORT SYSTEMS OR OTHER APPLICATIONS WHERE FAILURE COULD
CAUSE INJURY OR LOSS OF LIFE, THE LICENSED SOFTWARE SHOULD ONLY BE
INCORPORATED IN SYSTEMS DESIGNED WITH APPROPRIATE AND SUFFICIENT
REDUNDANCY OR BACK-UP FEATURES.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 3

Contents
1 Introduction ..4

1.1 Document Organization ..4

2 Hardware Requirements for DiskOnChip ...5

3 Using DiskOnChip with Windows CE ...6
3.1 Windows CE Basic Development Environment ...6
3.2 The TrueFFS Driver ..6
3.3 Incorporating the TrueFFS Driver in the Windows CE Image..8
3.4 Using More Than One DiskOnChip in the System ..11
3.5 Booting-up the System From the DiskOnChip...12
3.6 CEDOCTEST Utility ..14

4 Advanced Usage of DiskOnChip with Windows CE ..16
4.1 IOCTL Calls to the TrueFFS Driver ...16
4.2 Using the DiskOnChip from Application Programs..19
4.3 Loading and Running Applications from the DiskOnChip FAT Partition at Start-up...........20
4.4 Loading Components from the DiskOnChip FAT Partition Independently of GWES20
4.5 Registry Entries Storage ...23
4.6 Formatting the DiskOnChip Under Windows CE and in Production30
4.7 Remote Update of Windows CE Image in Binary Area ...30

5 Additional Information and Tools ...32

How to Contact Us ..33

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 4

1 Introduction
M-Systems’ DiskOnChip is a family of high performance flash disks. DiskOnChip provides a flash
disk in several standard form factors:

•••• DiskOnChip 2000 – Standard 32-pin DIP package, single chip flash disk.

•••• DiskOnChip Millennium – Standard 32-pin DIP package or standard TSOP-II 32-pin package
single die flash disk.

•••• DiskOnChip DIMM2000 – Standard 144-pin Small Outline DIMM (Dual In-line Memory Module)
flash disk.

Starting from ETK (Microsoft’s® Windows CE Embedded Tool Kit) version 2.1, Windows CE
provides native support for DiskOnChip 2000 and DiskOnChip DIMM2000 through the TrueFFS
driver. DiskOnChip Millennium is supported from ETK version 2.2 and up, with multiple data access
mode possibilities (8-bit, 16-bit and 32-bit accesses). When required, it is possible to obtain the newest
version of the TrueFFS driver directly from the M-Systems web site at http://www.m-sys.com.

The driver is built into the operating system, allowing system integrators to take advantage of
DiskOnChip storage solution.

This installation manual is intended for system integrators designing with the DiskOnChip 2000,
DiskOnChip Millennium or DiskOnChip DIMM2000 and describes how to install the DiskOnChip as
an additional disk or as a boot device under Windows CE. In this manual, all of the devices described
above will be referred to as DiskOnChip.

1.1 Document Organization
This installation manual explains how to integrate DiskOnChip into a Windows CE design. It is
assumed that the reader has basic familiarity with the Windows CE Embedded Tool Kit or OEM
Adaptation Kit. A functional copy of either of these is required.

Following is an overview of the sections in this installation manual:

• Chapter 2: A brief discussion on the hardware requirements of DiskOnChip.

• Chapter 3: A description of a typical Windows CE environment, TrueFFS driver and the TrueFFS
driver integration into the target system.

• Chapter 4: Discussion on Windows CE advanced issues and features while using DiskOnChip under
Windows CE.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 5

2 Hardware Requirements for DiskOnChip
Originally designed for PC environments, the DiskOnChip can also be used in different hardware
environments. The minimum hardware requirements are as follows:

• 12-bit address bus

• 8-bit data bus

• Three active low control signals (#CE, #OE, #WR)

Figure 1 below illustrates the DiskOnChip pin-out. For more detailed information of the DiskOnChip
hardware environment, refer to the following Application Notes:

• AP-DOC-010 “Designing with the DiskOnChip DIP”

• AP-DOC-030 “Designing with the DiskOnChip Millennium in a RISC Environment”

• AP-DOC-031 “Designing with the DiskOnChip Millennium in a PC Environment”

DiskOnChip
DIP

1
2
3

29
28

4
25
23
26
27
5
6

A12
A11
A10
A9
A8
A7
A6

7
8
9

A5
A4
A3

10
11
12

A2
A1
A0

NC
NC (A16)
NC (A15)
NC (A14)
NC (A13)

13
14
15
17

D0
D1
D2
D3

18
19
20
21

D4
D5
D6
D7

24
31

22

16GND

32VCC

SA11
SA10

SA9
SA8
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0

SD0
SD1
SD2
SD3
SD4
SD5
SD6
SD7

0.1

5V

Active Low Chip Enable
Active Low Output Enable

Active Low Write

CE#
OE#
WR#

SA12

30

Figure 1: DiskOnChip DIP Pin-out

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 6

3 Using DiskOnChip with Windows CE
DiskOnChip can be used for three main purposes in a Windows CE designed system:

•••• Storing user programs, drivers and data – Programs stored on the DiskOnChip are not fully
loaded into RAM for execution but rather are paged into it upon demand. In system configurations
that have a shell, the DiskOnChip is displayed as an icon, as any other folder in the system.

•••• Storing Registry Entries data – The system integrator can store and retrieve registry information
on/from the DiskOnChip. Being a non-volatile storage media, DiskOnChip is ideal for registry data
storage.

•••• Storing the Windows CE image – Enables booting of a Windows CE system directly from the
DiskOnChip.

3.1 Windows CE Basic Development Environment
The typical Windows CE development environment consists of a Windows NT host running the ETK
and a reference or a target platform connected to the host through PPSH/CESH and a serial port.

PPSH/CESH is a parallel port shell utility that enables the downloading of a binary image from the
development workstation, to the target platform. It also enables access to debugging processes running
on the development platform. The serial port is used for serial data communications and interfaces to
peripheral devices. It can be used in the Windows CE development environment to capture debugging
messages from the target platform and show the messages on the host when using a terminal. It is
recommended that these two ports are available on the target platform to ease the different
DiskOnChip and driver integration debugging stages.

3.2 The TrueFFS Driver
Windows CE has a built-in TrueFFS driver that handles access to/from the DiskOnChip. The driver,
which is an integral part of the operating system, is a Dynamically Linked Library named
TrueFFS.dll. It must be present in the Windows CE image for the DiskOnChip to be detected at
startup. Several registry entries must also be present at that time.

Note: The TrueFFS driver is also capable of controlling Linear Flash PC Cards, in addition to the DiskOnChip.

3.2.1 Flash File System
The TrueFFS driver implements its own data organization scheme, known as the Virtual Block Device
Flash Translation Layer, managing the memory cells on the DiskOnChip hardware. Windows CE does
not implement a separate Flash File System to support linear flash devices. Instead, the FAT file
system (FATFS), included in Windows CE, services files on the linear flash media via the TrueFFS
driver. FATFS does not directly read or write to the DiskOnChip hardware; the TrueFFS driver
performs all low-level hardware access, and presents the DiskOnChip to FATFS as a block-oriented
device.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 7

3.2.2 System Architecture for DiskOnChip
DiskOnChip devices used on Windows CE appear as ordinary disk drives. From an application's
perspective, files on the DiskOnChip are accessed through the standard Win32 File I/O APIs
(i.e. CreateFile(),ReadFile(), etc.).

A conceptual view of the flow of control to read a file from the DiskOnChip is shown in the following
figure:

DiskOnChip

Built-in Flash
(DiskOnChip)
Socket Layer

TrueFFS/FTL Layer

VirtualCopy()

Applications

Windows CE Kernel

FAT FileSystem Code

Device Manager

ReadFile()

DeviceIOContril()

DSK_IOControl()

Figure 2: Flow Control

The application calls the function ReadFile(), using a handle to a file stored on the DiskOnChip.
FATFS translates the read request to logical blocks and searches the buffer cache for the requested
blocks. If these are not present, it issues an IOControl() request to read bytes from the
DiskOnChip. The TrueFFS driver receives the IOControl() request and responds to the request by
accessing the DiskOnChip through one of the Socket Layers.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 8

3.3 Incorporating the TrueFFS Driver in the Windows CE Image
The next three subsections discuss modifications that are required in the system configuration to
include the TrueFFS driver and the required registry entries in the operating system image.

3.3.1 Updating the Sysgen File
CEsysgen.bat specifies the modules of the operating system to be included in the target project.
Once executed by sysgen.bat, this file sets the value of the CE_MODULES environment variables.

The file CEsysgen.bat, located in the directory %_WINCEROOT%\Public\
<Configuration>\Oak\Misc, should be modified to include the TrueFFS.
<Configuration> stands for the name of the configuration being built. To add the TrueFFS
component, append the following line to this file:
SET CE_MODULES=%CE_MODULES% TrueFFS

The MAXALL configuration, for example, already includes the TrueFFS driver.

Search for trueffs in the file %_WINCEROOT%\Public\Maxall\Oak\
Misc\CEsysgen.bat.

3.3.2 Updating the Binary Image Builder (.Bib) Files
Binary Image Builder files are used by makeimg.exe while building the Windows CE image.
Operating system components can be included or excluded in the image by modifying these files. To
include the TrueFFS driver, the system integrator has to take care of two environment variables prior to
invoking makeimg.exe. This file is automatically executed as part of a complete build process (e.g.
blddemo), therefore these variables are best taken care of before starting this process.

The environment variable IMGNODRIVERS must be undefined in order to include any drivers in the
image, including the TrueFFS driver.

The environment variable CE_MODULES_TRUEFFS must be defined in order to specifically include
the TrueFFS driver.

3.3.3 Updating the Registry
The Windows CE Device Manager uses several registry subkeys under the
HKEY_LOCAL_MACHINE\Drivers key when loading the TrueFFS driver. Built-in devices, such
as the DiskOnChip, rely on the registry settings to be present at boot time. Therefore, these keys must
be part of the default registry. This section describes the registry entries the Device Manager will use to
install the TrueFFS driver.

When building a CEPC image for x86-based PC platforms, the system integrator can define the
environment variable CEPC_DISKONCHIP prior to building the image. This ensures that the proper
registry entries are included. For other platforms, it is required that the following entries are added to

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 9

the appropriate platform.reg file. This file typically resides in
%_WINCEROOT%\Platform\<Platform name>\Files, where <Platform name> stands
for the relevant platform being used, e.g. ODO.

The following example shows how to configure the registry entries for a DiskOnChip on a 32-bit data
bus in a system that requires an 8-bit address shift:
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TrueFFS]

"Index"=dword:1
"Dll"="TrueFFS.dll"
"Prefix"="DSK"
"Order"=dword:1
"Ioctl"=dword:4
"FSD"="FATFS.DLL"
"WindowBase"=dword:20200000
"ADDRESS_SHIFT"=dword:8
"DOC_ACCESS_TYPE"=dword:20
"Folder"="DiskOnChip"

The last three lines are optional. The default parameter values are as follows:
"ADDRESS_SHIFT"=dword:8
"DOC_ACCESS_TYPE"=dword:8
"Folder"="Storage Card"

3.3.4 Parameter Descriptions
"WindowBase"
The "WindowBase" parameter determines the address of the DiskOnChip in the system memory.
The value should be within the 32-bit address range and is determined during hardware design or
system integration. The value shown serves as an example only.

"ADDRESS_SHIFT"
This entry can have only two values: 8 or 0. This field determines how the physical address will be
shifted before it is passed to the Virtual Copy function. By default, most systems require that this field
be set to a value of 8. In some systems, it needs to be set to a value of 0. Currently, there are no tools
available to determine which value to use. The appropriate value should be determined empirically
until a test tool is available.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 10

Further, the shift value depends on the MMU initialization value configured in the OAL. The physical
address is the base address of the DiskOnChip. The physical address parameter must be passed in such
a way that the MMU translation maps it into the correct physical location. Since the OAL can be
customized by each implementation, this entry must be setup to either shift the address right 8 places or
not to shift the address.

"DOC_ACCESS_TYPE"
This entry determines the data bus width when accessing DiskOnChip. The value of this entry can be:

"8" – 8-bit access, the DiskOnChip is accessed on a byte boundary.

Note: In this case the address lines of the DiskOnChip are connected directly to the address lines of the host without
shifting. A0 of the DiskOnChip is connected to A0 of the host.

"0x10" – 16-bit access, the DiskOnChip is accessed on a word boundary.

Note: In this case the address lines of the DiskOnChip are not connected directly to the address lines of the host. Instead
they are shifted one position: A0 of the DiskOnChip is connected to A1 of the host.

"0x20" – 32-bit access, the DiskOnChip is accessed on a long boundary.

Note: In this case the address lines of the DiskOnChip are not connected directly to the address lines of the host. Instead
they are shifted two positions: A0 of the DiskOnChip is connected to A2 of the host.

All the Registry Entries are hexadecimal values. This means that for an 8-bit data access mode the
command line is as follows:

"DOC_ACCESS_TYPE"=dword:8
For 16-bit data access mode enter the following:

"DOC_ACCESS_TYPE"=dword:10
And for 32-bit data access mode enter the following:

"DOC_ACCESS_TYPE"=dword:20
"Folder"
This parameter determines the folder name associated with the DiskOnChip. If this string is absent, the
default name is, "Storage Card".

If the parameter "Folder" is used to change the folder name to "DiskOnChip" for example, then
this will be the actual name of the device.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 11

3.4 Using More Than One DiskOnChip in the System
It is possible to use more than one DiskOnChip in your Windows CE system. Each DiskOnChip
appears as a separate device, and requires its own instance of the TrueFFS driver.

This section describes the steps required to incorporate, for example, two instances of the TrueFFS
driver into your Windows CE image:

1. Create a duplicate of the file TrueFFS.dll in the directory \release and name it TFFS.dll

2. Add the Registry Entries for these two drivers in the file project.reg
[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TrueFFS]

"Index"=dword:1
"Dll"="TrueFFS.dll"
"Prefix"="DSK"
"Order"=dword:1
"Ioctl"=dword:4
"FSD"="FATFS.DLL"
"WindowBase"=dword:D0000
"ADDRESS_SHIFT"=dword:8
"DOC_ACCESS_TYPE"=dword:20
"Folder"="DiskOnChip"

[HKEY_LOCAL_MACHINE\Drivers\BuiltIn\TrueFFS]
"Index"=dword:2
"Dll"="TFFS.dll"
"Prefix"="DSK"
"Order"=dword:1
"Ioctl"=dword:4
"FSD"="FATFS.DLL"
"WindowBase"=dword:D8000
"ADDRESS_SHIFT"=dword:8
"DOC_ACCESS_TYPE"=dword:20
"Folder"="DiskOnChip2"

Note: Set the field WindowBase to the corresponding DiskOnChip address.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 12

3. Add the following lines to the files ce.bib and common.bib
; @CESYSGEN IF CE_MODULES_TRUEFFS
 trueffs.dll $(_FLATRELEASEDIR)\trueffs.dll NK SH
 tffs.dll $(_FLATRELEASEDIR)\tffs.dll NK SH
; @CESYSGEN ENDIF

4. Compile the Windows CE image, using makeimg and download the image to the target.

From now onwards you can use more than one DiskOnChip (related to the number of instances of the
TrueFFS driver that were installed) in your system.

3.5 Booting-up the System From the DiskOnChip
Being able to boot up Windows CE from a DiskOnChip device is of great importance. It allows the
system integrator to use a very small ROM in the system, storing the operating system itself on the
DiskOnChip. Figure 3 illustrates the basic structure of a typical hardware system:

DiskOnChip (8 - 288 MB)CPU
Contains the Image

and
User files

-
ROM or NOR Flash

Contains the Boot Loader
RAM

 Typically 2MB
and up

Other Devices
Other Devices

(64-128KB)

Figure 3: Basic Structure of a Typical Hardware Environment

The system integrator generates a Windows CE image that contains the TrueFFS driver. This image is
then placed on the DiskOnChip, either as a standard file in the FAT file system or in a Binary partition
especially reserved for boot images. A “Boot Loader” is required to load this image into memory.

The “Boot Loader” is stored on ROM or NOR flash and is invoked upon boot. The “Boot Loader” code
consists of two parts:

1. Code that performs basic system initialization tasks.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 13

2. Code that copies the Windows CE image (e.g. NK.BIN), stored in the DiskOnChip, into RAM and
then jumps to the start address of the image.

A minimal amount of ROM is required to implement this boot solution, usually in the range of
64 - 128KBytes.

Figure 4 illustrates the flow control at boot time.

DiskOnChip

Copy Image to RAM

RAM

ROM or NOR-Flash

Boot Loader:
Initialize the System, Copy

the Windows CE image to

RAM and run it

Windows CE Image,

Including the TrueFFS Driver

Power- Up

Take Image From DiskOnChip

Windows CE
Image storage

File Storage

Figure 4: Boot Time Flow Control Using the BDK Code

For systems that use a bootROM, a BDK (Boot Developer Kit1), is available from M-Systems. For
systems that use a BIOS (typically for x86 PC-based architectures), there are several third party
‘CEPC-launcher’ solutions that enable booting Windows CE from the DiskOnChip FAT partition. The
idea is similar to the one described above, with the exception that there is no need to design a boot
loader. The solution relies on the BIOS to bring up the system. Once the system is up, a special loader
called “CE Launcher™” copies the Windows CE image into RAM and executes it.

1 The BDK can be obtained from M-Systems for free and under a license agreement. The BDK includes source code examples and an application note.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 14

3.6 CEDOCTEST Utility
CEDOCTEST2 is a test utility, provided in source code (WIN32 API), enabling the user to test the
parameter settings of the DiskOnChip in a Windows CE environment prior to integration of the
TrueFFS driver into the target Windows CE image.

Once the parameter settings used in CEDOCTEST are configured properly for the DiskOnChip, and
the test is run successfully, the Registry Entries of the TrueFFS driver, in the target Windows CE
image, can be set accordingly. For further information, refer to Section 3.3.3.

The source code of CEDOCTEST can be compiled and run on the target platform without the need to
integrate it into a Windows CE image.

Setting the required parameters in the utility CEDOCTEST is done by the #define command. The
following parameters need to be set:
"DOC_START_ADDR" Base address for DiskOnChip
"DOC_ACCESS_WIDTH" Width of the data bus (i.e. 8-bit, 16-bit or 32-bit)
"ADDRESS_SHIFT" Physical address shift
"DELAY_MILLISEC" Delay in milliseconds, useful for debugging purposes
"MILLENNIUM" If the DiskOnChip Millennium is being used
"DOC_FIRMWARE" Firmware stored on DiskOnChip Millennium or not

If the above parameters are set properly for the target platform, the output of the CEDOCTEST utility
will not display error messages. For detailed information about the output messages, refer to the
Readme file of this utility.

Below is a detailed description of the parameter settings of the CEDOCTEST utility.

3.6.1 "DOC_START_ADDR"
The parameter DOC_START_ADDR refers to the DiskOnChip base address on the target platform.

Example:
The base address of the DiskOnChip on the ODO3 platform is set as follows:
#define DOC_START_ADDR 0x20200000L

2 To obtain the CEDOCTEST utility, contact M-Systems tech support.

3 ODO is one of the WinCE reference platforms used by Microsoft for debugging.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 15

3.6.2 "DOC_ACCESS_WIDTH"
The parameter DOC_ACCESS_WIDTH determines the data bus width when accessing the DiskOnChip
(e.g. the way the address lines of the DiskOnChip are connected to the address lines of the host). This
parameter is similar to the Registry Entries setting of "DOC_ACCESS_TYPE"4.

The value (hexadecimal values) of this parameter can be the following:
"8" - 8-bit access: the DiskOnChip is accessed on a byte boundary
"0x10" - 16-bit access: the DiskOnChip is accessed on a word boundary
"0x20" - 32-bit access: the DiskOnChip is accessed on a word boundary

Example:
Defining the DOC_ACCESS_WIDTH to 8-bit access:
#define DOC_ACCESS_WIDTH 8

3.6.3 "ADDRESS_SHIFT"
The parameter ADDRESS_SHIFT determines how the physical address is shifted before it is passed to
the Virtual Copy function. There are two valid values for this parameter: 0 or 8.

Example:
Defining the ADDRESS_SHIFT value to 8:
#define ADDRESS_SHIFT 8

3.6.4 "DELAY_MILLISEC"
The parameter DELAY_MILLISEC enters a delay (in milliseconds) between some of the
CEDOCTEST operations. This parameter is used for debugging or tracing timing problems when
accessing the DiskOnChip.

Example:
Setting the delay to 3 msec:
#define DELAY_MILLISEC 3

3.6.5 "MILLENNIUM"
The parameter MILLENNIUM needs to be set when the DiskOnChip Millennium is used in the target
platform. If the DiskOnChip 2000 or the DiskOnChip DIMM2000 is used in the target platform, this
parameter needs to be commented out.

4 For further information on the parameter “DOC_ACCESS_TYPE”, refer to paragraph 3.3.4.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 16

Example:
When a DiskOnChip 2000 or DiskOnChip DIMM2000 is used:
/* #define MILLENNIUM */

3.6.6 "DOC_FIRMWARE"
The parameter DOC_FIRMWARE is only relevant when the DiskOnChip Millennium is used in the
target platform and refers to whether the TrueFFS DOS driver should be enabled or disabled. If the
TrueFFS driver needs to be disabled, comment out this parameter.

Example:
Disable the TrueFFS DOS driver:
/* #define DOC_FIRMWARE */

4 Advanced Usage of DiskOnChip with Windows CE

4.1 IOCTL Calls to the TrueFFS Driver
Version 4.1 of the TrueFFS driver for Windows CE enables the user to implement the following new
features of the DiskOnChip software:
- Obtain information on DiskOnChip

- Software write protection

- Run "garbage collection" in the background

- Access the Binary Partition5 on the DiskOnChip

- Format the DiskOnChip under Windows CE

These new features are accessible through standard Windows CE IOCTL calls to the TrueFFS driver
(provided by the API given in the file flioctl.h). The latest Windows CE drivers can be
downloaded from M-Systems website: http://www.m-sys.com/drivers.asp.

For more information on IOCTL calls, refer to Application Note AP-DOC-046 “Extended functions of
TrueFFS driver for DiskOnChip.

Note: Windows CE supports all the Extended functions of the TrueFFS driver, as listed in Application Note AP-DOC-046.

5 For more information on accessing the Binary Partition on the DiskOnChip, refer to Application Note AP-DOC-020 “Boot Developers Kit”.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 17

4.1.1 Example Code on IOCTL Calls to TrueFFS Driver

// *****************************
// ** MAIN – Get DiskOnChip info
// *****************************

#include <windows.h>
#include <winbase.h>
#include “ioctl.h”
void TRACE(LPCTSTR szFormat, ...);

int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hInstPrev,
 LPWSTR pszCmdLine,int nCmdShow)
{
HANDLE hDev=NULL; // handle to the TrueFFS driver
DWORD dwGarbage=0; // the amount of data returned
BOOL bStatus=FALSE; // return code from DeviceIoControl
flDiskInfoOutput diskInfoOutput;
flOutputStatusRecord OutputStatusRecord;

// Bind TrueFFS driver
TRACE(TEXT("Binding TrueFFS driver\n"));
hDev= CreateFile(TEXT("DSK1:"),
 GENERIC_READ|GENERIC_WRITE,
 0,
 NULL,
 OPEN_EXISTING,
 0,
 NULL);
if(hDev ==INVALID_HANDLE_VALUE)

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 18

{
 TRACE(TEXT("Binding DiskOnChip driver failed .error
 %ld\n"),GetLastError());
 hDev = NULL;
 return 1;
}

//Calling GetInfo extended function
TRACE(TEXT("Calling GetInfo\n"));
// get DiskOnChip information
if(DeviceIoControl(hDev,
 FL_IOCTL_GET_INFO,
 NULL,
 0,
 &diskInfoOutput,
 0,
 &dwGarbage,
 NULL))
{
}
else
{
 TRACE(TEXT("ERROR code of %d while getting DiskOnChip
 information\n"),InfoOutput.status);
 return 1;
}
TRACE(TEXT("\n The test completed successfuly\r\n"));
CloseHandle(hDev);
hDev = NULL;
return 0;
}

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 19

// FUNCTION NAME "TRACE"
void TRACE(LPCTSTR szFormat, ...)
{

TCHAR szBuffer[512];

va_list pArgs;
va_start(pArgs, szFormat);
wvsprintf(szBuffer, szFormat, pArgs);
va_end(pArgs);

_tcscat(szBuffer, TEXT(""));
OutputDebugString(szBuffer);

}

4.2 Using the DiskOnChip from Application Programs
Windows CE does not use drive letters, like other Microsoft operating systems. Instead, every storage
device is simply a sub-directory of the root directory. The default name for DiskOnChip in Windows
CE is “Storage Card”. Files on the DiskOnChip are accessed via the Win32 file I/O APIs (Application
Program Interface functions). Calling CreateFile() on the appropriate device name creates a file
on the DiskOnChip and returns a file handle.

For example, to create the file test.txt on a DiskOnChip that is represented in the root directory by
the name “Storage card”, use the command CreateFile(TEXT(“\\Storage
card\\test.txt”),…).
Applications can use this handle to read or write data to/from the file. In order to write data to the file,
the application calls the function WriteFile(). FATFS (Windows CE File System) translates the
"write" request to logical FAT blocks. FATFS searches the buffer cache for the requested block(s). If
these are not present, FATFS issues an IOControl request to read bytes from the DiskOnChip.

The TrueFFS driver, responsible for the DiskOnChip I/O, receives the IOControl request and then
answers it by accessing the flash media.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 20

4.3 Loading and Running Applications from the DiskOnChip FAT
Partition at Start-up

Applications in Windows CE can be integrated into NK.BIN or stored in the FAT partition of the
DiskOnChip. ‘Splitting’ the image by storing an application(s) in the DiskOnChip FAT partition
reduces the initial size of NK.BIN, and provides a flexible solution for upgrades. It also improves
design in boot time and system performance and frees up RAM space when loading only the most
commonly used AP at start up. This enables loading other application(s) to RAM as required.

To load applications that are stored in the FAT partition of the DiskOnChip automatically upon boot, a
registry entry in NK.BIN is required. Add the entry to the following section:
[HKEY_LOCAL_MACHINE\init] in the file Project.reg.

Example:
The application user_application.exe is loaded after shell.exe, device.exe and
gwes.exe:
[HKEY_LOCAL_MACHINE\init]
"Launch10"= "shell.exe"
"Launch20"= "device.exe"
"Launch30"= "gwes.exe"
"Depend30"= hex:14,00
"Launch40"= "user_application.exe"
"Depend40"= hex:1E,00, 14,00

Since the DiskOnChip is not a default folder in Windows CE, a search path needs to be added to one of
the registry (*.reg) files. This is similar to the PATH command in DOS.
[HKEY_LOCAL_MACHINE\Loader]
"SystemPath"=multi_sz:\\DiskOnChip\\

4.4 Loading Components from the DiskOnChip FAT Partition
Independently of GWES

4.4.1 Introduction
Windows CE (up to and including version 2.11 Platform Builder (PB)) used an asynchronous process
for loading the file system layers.

This resulted in a limitation that the FAT partition could be mounted and accessed only after the
GWES component was fully loaded. Consequently, it was not possible to load components such as
built-in drivers, font file, and the GWES component itself from the DiskOnChip FAT partition on
system startup.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 21

M-Systems and Microsoft have developed a special set of APIs that enable FAT mounting
independently of the GWES component, so that the files system can load synchronously.
The changes made to the TrueFFS and FATUI drivers by Microsoft allow loading initial components
from the DiskOnChip FAT partition at boot time. This provides flexibility in system designs by
enabling separate and safe updates of the Image components. For example, you can create a language-
independent system by separating the font file from the kernel. To change the language support, just
replace the font file located in the FAT partition.

The following sections describe the standard boot flow, the changes required to eliminate the
dependency on the GWES and FATUI components, and the resultant new boot flow.

4.4.2 Accessing the DiskOnChip FAT Partition in a Standard Environment
(after GWES is loaded)

In the standard environment, the FAT partition of the DiskOnChip is mounted only after the GWES is
loaded. For example, loading an application or a loadable DLL after Windows CE is fully up and
running, but not components loaded in the sequence before the GWES.exe (such as built-in driver, etc).

In the standard usage of the Windows CE 2.12 PB, the device.exe module together with the TrueFFS
released driver6 limit access to the FAT partition until the GWES component is fully loaded. TrueFFS
uses an API, namely, IsAPIReady() that has a dependency on the GWES component. This API is used
within the TrueFFS driver to verify that the GWES was completely executed, and that the GWES-
enabled APIs are available at that stage of the boot process.

Therefore, a typical component-loading sequence in Windows CE 2.11/2.12 PB can be as follows:

• Device.exe

• Load FATFS

• Load TrueFFS

• Load device drivers (LCD, KBD, Serial, ...)

• GWES.exe

• Mount DiskOnChip FAT

• Load AP1.exe

• Load Driver.DLL

(Refer to Sections 4.2 and 4.3.2 for more information on loading applications and loadable DLLs from
the FAT partition).

6 The TrueFFS driver is available through two sources: shipped with the officially released Windows CE CDs, or through M-Systems’ web site (where the latest driver is
available). The described problem refers both to the TrueFFS that is shipped with the Windows CE CD and to the TrueFFS that is currently available in M-Systems web site and is
marked as version v121.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 22

A reminder: In these cases:

• Ensure that the application is located on a DiskOnChip that is in the system path (refer to section 4.2
of this Manual).

• Wait/verify that the FAT is already mounted; for example, by adding a basic application that will
loop, CreatFile(), until success.

4.4.3 Eliminating GWES-Component Dependency
Changes implemented in the TrueFFS driver include replacement of the standard API asynchronous
function, LoadFSD(), with the standard API synchronous function, LoadFSDEx().

Before the Hal changes (see the following note), the TrueFFS driver used a polling thread to wait for
the GWES to be loaded. After the GWES loading was completed, the polling thread was killed and
LoadFSD() was invoked. Since the Hal changes, there is no polling thread creation, and TrueFFS
invokes LoadFSDEx() independently of the GWES initialization.

Note: The Hal changes constitute a non-standard API set that is not part of the standard Windows CE 2.12 PB. These
changes were tested successfully in Microsoft with TX3912 and SA1100 CPU in the 2.12 and Cedar environments. The Hal
changes will be part of Cedar code base and of other newly released CE packages such as MSTV, etc. Because these
changes are a non-standard API set, they require a special, modified TrueFFS driver from M-Systems, and a change to the
file /Public/common/OAK/drivers/FATUI/UI.c

4.4.4 Eliminating FATUI-Component Dependency
FATFS is dependent on two components, FATUI and GWES, which supply APIs used by the FATFS
component. (The reason the DiskOnChip media could be mounted only after GWES was executed).
(Refer to Section 4.4.1).

Note: The FATUI and GWES components are interdependent. FATUI uses a number of GWES
components, such as LoadStringW(). (For a detailed list of functions that are included in the
GWES, see the ETK help).

To eliminate the dependency on the FATUI component, perform the following:

1. Replace the function int FATUIEvent() by replacing the UI.c available from M-Systems
with the UI.c used by client/customer; the path is:
\WINCE212\PUBLIC\COMMON\OAK\DRIVERS\FATUI

2. Rebuild the image using the command >>blddemo

3. Copy the new TRUEFFS.dll to the release directory.

4. Run the command >>makeimg

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 23

4.4.5 Accessing the DiskOnChip FAT Partition Before GWES is Loaded
*Having eliminated GWES and FATUI component dependency, you are now able to load components
from the DiskOnChip FAT Partition before GWES is loaded. Moreover, you can create Windows CE
images that use a DiskOnChip FAT Partition that does not contain GWES components at all.

Device.exe (also loads built-in drivers)

FATFS (TrueFFS/ATA -> mount DiskOnChip media)

Load DLLs from FAT

Load Font files from FAT

GWES.exe (loads only after all built-in drivers are loaded)

Load Applications from FAT

4.4.6 Loading Fonts and Built-in Drivers from DiskOnChip FAT
The font file is loaded by the GWES component. Font files can be saved in the DiskOnChip FAT
partition, and by editing the registry key (use full path of file) you can have Windows CE load them
from there:
[HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\FontLink\SystemLink]

In the same way, built-in DLLs can be loaded from the DiskOnChip FAT partition.

4.5 Registry Entries Storage

4.5.1 Introduction
Non-volatile media, such as the DiskOnChip, enables developers to save changes of Windows CE
Registry Entries and to retain these modifications on subsequent boot-up of the target platform. This
was accomplished by the introduction of the Windows CE Persistent Registry Entries (introduced in
Windows CE 2.11), which solved the limitation of losing boot updates saved in volatile RAM Registry
Entries.

This chapter describes the two available options for storing the Persistent Registry Entries on the
DiskOnChip.

4.5.2 Windows CE Registry Entries Definition
Windows CE defines two types of Registry Entries:

• Default Registry Entries

• Persistent Registry Entries

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 24

Windows CE works with the Registry Entries that are currently RAM-based. The Registry Entries that
are part of the NK.BIN image and are copied to the RAM during boot time are called the Default
Registry Entries (DRE).

Note: Updates to the Registry Entries only influence the RAM-based copy and not the copy located inside NK.BIN. This
implies that after each power shutdown any changes to the Registry Entries are lost.

Registry Entries that are stored separately from the NK.BIN are known as Persistent Registry Entries
(PRE). The PRE can be copied to the RAM automatically (during boot time) and overwrite the Default
Registry Entries. Since these Registry Entries are stored outside NK.BIN, it is possible to save changes
made to the Registry Entries that will be reflected in the next boot (such as Touch Panel calibration
data, IP info etc).

Since Windows CE uses the Default Registry Entries upon boot, a special scheme is required to
overwrite them with the Persistent Registry Entries at boot time. Depending on where the Persistent
Registry Entries are stored on the DiskOnChip (FAT partition or Binary partition), a single-boot
solution or double-boot solution is required.

4.5.3 Boot Solutions
There are two methods to load and save the Persistent Registry Entries:

1. Single-boot solution: Save PRE in a special Binary (hidden) partition on the DiskOnChip.
Implement the function readRegistryFromOEM() to load the registry information from the
Binary partition and the function writeRegistryToOEM() to save the registry information in
the Binary partition. The functions readRegistryFromOEM() and
writeRegistryToOEM() are implemented by using API provided by M-Systems’ Boot
Developer Kit (BDK) to access the Binary partition on the DiskOnChip.

2. Double-boot solution: Save PRE as a file on the FAT partition of the DiskOnChip by using the
function RegCopyFile() to save registry information and the function RegRestoreFile()
to load registry information. This solution can only be used in platforms that support warm boot.

4.5.4 Double-Boot Solution
Windows CE provides two functions to save and load the PRE from the FAT partition of the
DiskOnChip. RegCopyFile() is used to save the PRE on the FAT partition, while
RegRestoreFile() is used to load the PRE into RAM7. Both these functions access the FAT
partition of the DiskOnChip through the TrueFFS driver.

Storing the PRE in the FAT partition of the DiskOnChip results in a double-boot of the system. Upon
the first (cold) boot the Default Registry Entries are copied into RAM. At the end of the boot process,
RegRestoreFile() is called in order to copy the PRE into RAM and overwrite the Default

7 The APIs RegCopyFile() and RegRestoreFile() are documented in the Windows CE ETK or SDK.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 25

Registry Entries. A warm boot is required to make the new RAM-based Registry Entries (i.e. Persistent
Registry Entries) the active one.

During operation, a call to the RegCopyFile()saves the changes to the PRE on the FAT partition of
the DiskOnChip.
Note: Saving PRE to the FAT area is the responsibility of Windows CE and is described in this document for the designer’s
attention. For further help on this issue, refer to the Platform Builder help files.

4.5.5 Single-Boot Solution
Registry Entries hold critical data for the operating system and it is therefore preferable to store them in
an area that is protected from user access. DiskOnChip enables storing the Windows CE PRE in a
special Binary (hidden) partition.

Principal of Operation
Storing the PRE in the Binary partition of the DiskOnChip results in a single-boot of the system.

Windows CE exposes two global pointers named pWriteRegistryToOEM, and
pReadRegistryFromOEM. The developer is required to implement the functions
writeRegistryToOEM() and readRegistryFromOEM() and initialize the pointers
pWriteRegistryToOEM and pReadRegistryFromOEM to point to these two functions. The
functions writeRegistryToOEM() and readRegistryFromOEM() in the OEM adaptation
layer use functions provided by M-Systems’ Boot Developer Kit (BDK) to access the PRE in the
Binary partition8.

During registry initialization (one of the first steps taken at boot time), Windows CE checks the pointer
pReadRegistryFromOEM. If the pointer contains a valid address, the function
readRegistryFromOEM() is called by the kernel and the PRE are copied from the Binary partition
on the DiskOnChip into the RAM. This overwrites the Default Registry Entries that were already
located in RAM.

Note: If the media is not found or the data on the DiskOnChip is invalid, the Default Registry stored in ROM will be loaded
to RAM.

When saving a modification made to the registry while the target platform is operating, a series of
function calls must be made through a Windows CE application to start the write process. As a result,
the kernel calls the function writeRegistryToOEM() to write the data to the DiskOnChip.
Modifications to the registry stored in RAM may be done as frequently as required. User discretion is
required when deciding which registry modifications are to be stored in the PRE. To avoid degradation
of OS performance, Microsoft recommends that write access to the PRE storage be performed after a
group of changes have been made to the registry To read the new registry settings from PRE, a system
reboot is required.

8 See Application Note “AP-DOC-20 - DiskOnChip Boot Developer Kit”

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 26

In order to initiate the PRE saving process the function RegFlushKey()9 has to be called to update
the PRE on the DiskOnChip. The function RegFlushKey() calls the function
writeRegistryToOEM().

Note: A source code file Registry.c containing an implementation example of the readRegistryFromOEM() and
writeRegistryToOEM() APIs can be obtained from M-Systems.

Relationship Between the DiskOnChip Binary Partition and the Registry
The Binary partition contains binary data in the format below. In this example, the segment address of
the DiskOnChip is assumed to be D000h.

D000 (DiskOnChip address)
DWORD DWORD DWORD BYTES (of Registry Size)
Registry Magic Registry Size Checksum Registry Data

When the registry is read, the Registry Magic is checked to verify whether or not data has been
properly written to the Binary partition. The registry size is then checked against the defined constant,
REGISTRY_IMG_LENGTH. The registry size provided by the OS kernel cannot exceed this constant.
A checksum is then calculated for the registry data and checked against the checksum written as the
third DWORD in the Binary partition. Finally, if the preceding information is correct, the registry data
is read and stored in RAM. If the information is not correct, then the OS kernel extracts the registry
stored in ROM and loads it into RAM.

Step-by-Step Implementation of Single Boot Solution
To store the PRE in the Binary partition of the DiskOnChip, thereby implementing a Single Boot
Solution, perform the following steps:

1. Format the DiskOnChip

To create a Binary (boot) partition on the DiskOnChip, format the DiskOnChip using M-Systems’
DFORMAT utility. Note that the size of the created partition should be at least the size of the PRE you
want to save, and should be created with a boot partition signature. The signature must be the same as
the signature being used in the code (BDK code) that implements the functions
writeRegistryToOEM()and readRegistryFromOEM().

For formatting the DiskOnChip under Windows CE, refer to Section 4.6 of this document. For
formatting the DiskOnChip in DOS environment, refer to application note AP-DOC-020.

9 RegFlushKey (hKey) – Call the RegFlushKey with the predefined handle value HKEY_LOCAL_MACHINE.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 27

2. Modify the Required Source Files

There are three source files provided with the BDK source code that need to be customized to your
specific requirements. These files are added to the CE OAL to provide the functions necessary to save
and restore the PRE on the Binary partition of the DiskOnChip.

DOC_BDK.H file

This is the header file for the BDK source file DOC_BDK.C. It contains compile time definitions, type
declarations, and BDK function prototypes. The compile time definitions must be set to correspond
with the target platform.
#define WRITE_IMAGE // when uncommented, this enables write access to the

Binary partition
#define FAR_LEVEL 0 // 0 – (recommended) use flat memory model or have no far

pointers

// 1 – only the DiskOnChip window may be far

// 2 – only the DiskOnChip window and RAM window may
be far

// 3 – DiskOnChip window, RAM window and pointer(s)
transferred to the entry-point function may be far

#define DOC_ACCESS_TYPE 8 // supported bus widths: 8-bits(default), 16-bits, 32-bits

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 28

The constants defined below determine the specific address or address range used to search for the
DiskOnChip. If constants have the same address value, no search is performed and the kernel assumes
that the device resides at that specific address. If the addresses are different, the kernel scans the
address range to search for the device. If a range is specified, the low address must have a lower value
than the high address. The high address must be the last address that can be used as an ending address
for the DiskOnChip window.
#define DOC_LOW_ADDRESS 0xA00d0000L // start address of search
#define DOC_HIGH_ADDRESS 0xA00d0000L // end address of search

DOC_BDK.C file
This file is the source file that provides functions to access the Binary partition. Specific modifications
to the original file provided by M-Systems are listed below.

The following code block, which exists in two locations in this file, must be commented out to
eliminate the “cannot find include file <dos.h>” compiler warning.
/* #ifdef DOS */
/* #include <dos.h> */
/* #endif */ /* DOS */

REGISTRY.C file
This file contains the interface between the kernel and the BDK functions. The kernel functions,
readRegistryFromOEM() and writeRegistryToOEM(), are defined in this file. Specific
modifications to the original file provided by M-Systems are listed below.

The following compile time definitions may be commented out if output of the debug messages and/or
calculation of a checksum are not required. However, it is highly recommended that a checksum be
written to the Binary partition, as this verifies that the registry data written to the partition is valid.
#define REG_DEBUG
#define CHECK_SUM

The following defined constant must correspond with the actual formatted size of the Binary partition.
In the following example, the Binary partition was formatted for 256K bytes. This means that the
registry image length must be 0x40000, the hex value of 256K.

Warning: Formatting the DiskOnChip and setting the value for the defined constant,
REGISTRY_IMG_LENGTH, are two independent, manual tasks. M-Systems recommends that the
value of the constant correspond with the physical size of the Binary partition. The effects are unknown
if these two do not correspond.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 29

#define REGISTRY_IMG_LENGTH 0x40000 // 256 Kbytes

Ensure that the following #define fits the signature used while formatting and creating the Binary
partition:
#define BOOT_IMG_SIGNATURE "BIPO"

3. Changes to the File that Contains the OEMinit() Function

Changes to the kernel are required to notify the operating system that the APIs
readRegistryFromOEM() and writeRegistryToOEM() exist to handle the saving and
restoring of registry data from the DiskOnChip Persistent Registry storage area. This file, which
typically resides in the kernel\hal subdirectory of the platform subdirectory, requires the following
modifications:
extern BOOL (*pWriteRegistryToOEM)(DWORD dwFlags, LPBYTE lpData, DWORD cbData);
extern DWORD (*pReadRegistryFromOEM)(DWORD dwFlags, LPBYTE lpData, DWORD cbData);
extern DWORD readRegistryFromOEM(DWORD dwFlags, LPBYTE lpBuf, DWORD len);
extern BOOL writeRegistryToOEM(DWORD dwFlags, LPBYTE lpBuf, DWORD dwLen);
OEMInit()
…..
{
pWriteRegistryToOEM=WriteRegistryToOEM;
pReadRegistryFromOEM=ReadRegistryFromOEM;
…
}

4. Compile the PRE Saving Code

Add DOC_BDK.H, DOC_BDK.C, and REGISTRY.C to the kernel\hal subdirectory of the platform
directory (the same directory where the file that includes the function OEMInit()is located) to reflect
the modifications described in the above sections. Edit the Sources file to build the .C files. For
example:
SOURCES= \

debug.c \
cfwpc.c \
…
doc_bdk.c\
registry.c\

The Windows CE image can now be compiled.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 30

4.6 Formatting the DiskOnChip Under Windows CE and in Production10
If the DiskOnChip is not formatted, a formatting process confirmation dialog box is displayed during
the boot process. If confirmed, the DiskOnChip is formatted and prepared for use. The boot sequence
continues seamlessly and re-boot is not required.

In order to format the DiskOnChip manually, a Windows CE dformat utility is available from
M-Systems. This utility can be incorporated in the image or can be run remotely from the host (through
PPSH/CESH).

dformat utility usage:
dformat -w: DOC_base_address
-l: Binary partition length
-n: Binary partition signature. Default: BIPO
-e: {firmware} / {!} (! = to remove firmware)
-s: {binary partition image} / {!} (! = to remove binary

partition)
-p: base_address shift. Options: 0 or 8. Default: 8
-a: Access type. Options: 8, 16 or 32. Default: 8

If the use of a hexadecimal number is required, add the prefix 0x.

Formatting the DiskOnChip during boot time is made possible by using the OSAK (OS Adaptation
Kit) from M-Systems, which enables formatting and accessing the DiskOnChip FAT area in an OS-less
environment. The OSAK11 can be modified to fit different production environments (such as VxWorks,
QNX, DOS, etc.) to enable formatting and partitioning of the DiskOnChip during production. The
OSAK is supplied in source code and requires a license agreement.

Writing the Windows CE image and data into the DiskOnChip Binary partition, through files or
buffers, is possible by using the BDK source code, provided by M-Systems. The TrueFFS driver under
Windows CE makes writing files to the FAT partition possible.
Important: You must reboot your system in order to remounted the DiskOnChip.

4.7 Remote Update of Windows CE Image in Binary Area
Remote update of data that resides in the Binary partition of the DiskOnChip is another important
implementation. The BDK code in the bootROM enables the developer to update the DiskOnChip boot
image from a remote server in a fast and safe way. For example, to allow the end user to update
through a dial-up or network port the Windows CE image file NK.BIN, drivers and applications that
reside in the Binary partition of the DiskOnChip.

10 For other methods of formatting DiskOnChip in production phase, refer to Application Note AP-DOC-039.
11 The OSAK –DiskOnChip OS Adaptation Kit – is a source code driver package available from M-Systems under license agreement.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 31

There are two basic ways to do this:

• Updating the Binary partition using an application, (which uses the BDK write API) - while the OS
is running12

• Updating the Binary partition upon boot – before the OS is launched

When updating the OS image itself, it is recommended to implement the remote update, using the
second option, before the OS is launched. Since the update mechanism is included in the bootROM, it
is possible to start again in case of power failure during the update process.

Figure 5 illustrates a bootROM update scheme, using the BDK init and write API functions:

NO

Boot ROM code flow -
updating scheme

System Init Code

Do you want to update your
OS image?

Init a dial-up or Network PORT
for dowloading

and Allocate a RAM buffer

Download new OS image from
Remote server to the RAM
buffer (typically 512 bytes)

Write the new OS image to the
Binary Partition - using BDK init

and write API functions

Copy OS image from
DiskOnChip to RAM

Jump to start address of OS
image in RAM

End / Verify
Updating process

YES

Figure 5 BootROM Flow Remote Update Using BDK Functions to Update the OS Image

12 Note that Windows CE is 32WIN API driven and therefore you may need to make slight changes to the BDK functions in order to be

able to allocate memory and compile it. You should implement VirtualAlloc() and VirtualCopy() CE APIs in order to
allocate the bdkWin pointer.

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 32

5 Additional Information and Tools
Additional information about DiskOnChip, including application notes, can be found at
http://www.m-sys.com.

Information about Annasoft Systems can be found at http://www.annasoft.com.

More information about booting up a Windows CE system using the DiskOnChip can be obtained from
Bsquare at http://www.bsquare.com.

Additional tools and documents are listed in the following table:

Document/Tool Description
AP-DOC-010 Designing with the DiskOnChip DIP
AP-DOC-020 Boot Developers Kit
AP-DOC-030 Designing with the DiskOnChip Millennium in a RISC

Environment
AP-DOC-031 Designing with the DiskOnChip Millennium in a PC

Environment
AP-DOC-038 Designing the DiskOnChip with PBRD 2.12
AP-DOC-039 Programming of the DiskOnChip Millennium TSOP-II
AP-DOC-040 Programming DiskOnChip Millennium TSOP, Using a Bed of

Nails
AP-DOC-041 Windows CE Persistent Registry Storage Using DiskOnChip
AP-DOC-042 Designing the DiskOnChip with Hyundai ARM720 CPU
AP-DOC-044 Booting from the DiskOnChip Millennium
AP-DOC-045 Implementing Persistent Storage in MSTV-based Designs

Using DiskOnChip
AP-DOC-046 Extended Functions of TrueFFS Driver for DiskOnChip
DiskOnChip 2000 Data Sheet DiskOnChip 2000 Data Sheet
DiskOnChip Millennium Data Sheet DiskOnChip Millennium Data Sheet
DiskOnChip DIMM2000 Data Sheet DiskOnChip DIMM2000 Data Sheet
DiskOnChip Utilities DiskOnChip Utilities User Manual
DiskOnChip DIP EVB DiskOnChip Evaluation Board
DiskOnChip-GANG 1+8 DIP Socket GANG Programmer

 Using DiskOnChip with Windows CE

91-SR-005-07-7L Rev. 3.2 33

How to Contact Us
Internet: http://www.m-sys.com

E-mail: info@m-sys.com

USA Office:
M-Systems Inc.
8371 Central Ave, Suite A
Newark CA 94560
Phone: 1-510-494-2090
Fax: 1-510-494-5545

Taiwan Office:
Room B, 13th floor, No. 133
Min Sheng East Road
Taipei, Taiwan
R.O.C.
Phone: 886-2-87706226
Fax: 886-2-87706295

Japan Office:
M-Systems Japan Inc.
Arakyu Bldg., 5F
2-19-2 Nishi-Gotanda Shinagawa-ku
Tokyo 141-0031
Phone: 81-3-5437-5739
Fax: 81-3-5437-5759

U.K. Office:
M-Systems UK Ltd.
PO Box 20
Chalgrove SPDO
OX44 7YP
Phone: 44-1865-891-123
Fax: 44-1865-891-391

Israel Office:
M-Systems Ltd.
Atidim Industrial Park P.O.B. 58036
Tel Aviv 61580
Phone: 972-3-647-7776
Fax: 972-3-647-6668

M-Systems assumes no responsibility for the use of the material described in this document.
Information contained herein supersedes previously published specifications on this device from
M-Systems. M-Systems reserves the right to change this document without notice.

