Features

- 8 dynamic input channels, expandable up to 56 channels
- 4 tachometer channels for rotational measurements
- High-speed Ethernet connection to the PC for continuous recording
- Four eZ-Series software packages address a wide variety of vibration monitoring and analysis applications
- TEDS support

Vibration analysis and monitoring has never been easier than with the new ZonicBook/618E™ and eZ-Series™ analysis and monitoring software. The ZonicBook leverages 25+ years of experience providing vibration measurement solutions. This new Ethernet-based solution adds another dimension — the lowest cost, full-featured 8 to 56 channel analyzer available. The ZonicBook hardware is the signal conditioning and acquisition engine, while the eZ-Series software in the PC defines the specific analysis and monitoring features of the system.

Software Overview

Four software packages are available for the ZonicBook, each tailored to a particular vibration measurement and analysis application. Choose the package that suits your application now, and upgrade to additional packages as your requirements evolve.

- **eZ-Analyst™** provides real-time multi-channel vibration analysis, including overlay of previously acquired data while acquiring new data, strip charts of the throughput data files, cross channel analysis, and direct export to the most popular MODAL analysis packages, ME Scope and Star Modal.

- **eZ-TOMAS™** provides on-line vibration recordings, limit checking, storage, and analysis of rotating machinery. Order track, Waterfall, Orbit, Polar, Bode, Spectrum, and Trend displays show machine startup or shutdown events, as well as diagnose long term changes in machine health.

- **eZ-Balance™** is used to balance rotating machinery with up to seven planes. A balance toolkit, including Split Weight calculations, supports the balance process. The balance vectors are displayed on a polar plot so the user has a visual indication of the improvement. Time and spectrum plots show detailed vibration measurement during the balance process.

- **eZ-NDT™** package is exclusively used in production applications to determine the quality of composite-metal products at production rates of 1 part per second.

Refer to the following pages for detailed information on each of the software packages. Demo software is also available from our website at [iotech.com/sonicbook](http://iotech.com/zonicbook), or contact IOtech to schedule an on-site demonstration of the ZonicBook by one of our regional sales engineers at your facility.
Hardware Overview

The heart of the ZonicBook is a high-speed Ethernet engine powered by a PowerPC processor, enabling all acquired data to be transferred to the PC in real time at 2+ Mb/s per second. This means that every acquired data point can reside on your PC’s hard drive, making recreation and post acquisition analysis of acquired data as precise as possible. Other analyzers simply store frequency-domain information, which makes play-back less precise than the original real-time measurement. Instead, ZonicBook transmits all time-domain measurements, which means there’s no data loss when analyzing acquired waveforms. Since the data is already on your PCs hard drive, there’s no time lost transferring data, as with other analyzers.

Another advantage of the ZonicBook architecture is there is virtually no limit to the length of time that continuous data can be acquired. Other systems do not offer continuous time-domain transfer to the PC, and as a result the waveform length is limited by the amount of built-in data storage. With the ZonicBook, the only limitation is the amount of hard disk memory that can be added to your PC, or that can be accessed by your PC on a network.

Finally, our architecture makes expansion beyond the 8 built-in channels less expensive than other suppliers. You can expand the ZonicBook in 8-channel increments up to 56 channels, and each additional 8 channels are approximately one third the cost of the first 8 channels. All channels in a ZonicBook system are measured synchronously, providing 1 degree phase matching between channels.

Signal Conditioning

Every input to a ZonicBook system is software programmable for voltage range, AC/DC coupling, ICP™ source, and is capable of reading sensor calibration information using Transducer Electronic Data Sheet (TEDS).

When ICP sensors are attached, AC coupling with 4 mA bias current is selected via software. AC coupling without bias is also possible for measuring any AC waveform from 25 mV to 5V full scale. DC coupling is also software selectable, with full scale ranges from 25 mV to 25 VDC coupling is particularly useful when attaching proximity sensors.

To insure that the sensor has not operated outside of its desired range, limits for each channel can be programmed to illuminate a front-panel LED for each channel if a limit is exceeded. LED status is latched when the limit is exceeded, allowing the operator to know whether an over-range condition has occurred at any time during an acquisition. Over-range status information is also available via the eZ software packages.

Each analog input channel is provided as a conditioned analog output on the rear panel of the ZonicBook. The output signals are post-filtering and can be used to drive other recording devices.

Source Output

The ZonicBook includes one analog output channel, capable of generating continuous or swept sine, with programmable amplitude up to 5V and frequency up to 5 kHz. Each 8-channel WBK18 option also includes one analog output channel capable of generating the same range of sine wave outputs as the ZonicBook.

Measurement

The dynamic range of the ZonicBook on a single range and measuring a single channel is 70 dB. The ZonicBook offers a wider effective dynamic range than most other instruments because of the number of programmable ranges that are possible. Nine ranges, from 25 mV to 25V full scale can be software selectable on a per-channel basis.

All channels are sampled synchronously, resulting in better than 1 degree of phase matching between channels. The maximum per-channel bandwidth is a function of the number of channels enabled. For example, up to 4 channels can be enabled using the maximum bandwidth of 50 kHz, and 20 kHz is the maximum bandwidth in a 16-channel system. A programmable low-pass filter insures that unwanted frequencies are rejected before being sampled, with rejection of 75 dB minimum.

Power

The ZonicBook can be powered directly from a 10 to 30 VDC source, including a standard automotive battery, or can be powered from any 100 to 250 VAC source. For portable applications where no power is available, an optional battery pack which also serves as a UPS is available. With an 8-channel ZonicBook system, the DBK34A battery/UPS provides approximately two hours of operation.

PC Connection

The ZonicBook has a 10/100BaseT Ethernet interface for connecting to the PC. It can be used in a point-to-point application, as in the case where it is attached to a notebook PC and used in the field. In this case the 2 Mbytes of buffer storage built into the ZonicBook is adequate to insure that continuous data transfers to the PC can occur without risk of data loss.

The ZonicBook is also capable of attaching to a network, presuming the network has enough available bandwidth. The network bandwidth required is a function of the number of signals being measured, and the bandwidth of the signals. The built-in 1 Msample of memory can be expanded up to 64 Msamples via an internal WBK30 memory option (factory installed).
If continuous, multi-channel measurements are required, it is recommended that a separate Ethernet connection between the ZonicBook and the PC be established to insure uninterrupted data transfer.

Tachometer Inputs

The ZonicBook has four separate inputs for measuring Tachometers. To accommodate a wide variety of tachs, each input is programmable for input range up to ±50V. Tach inputs have programmable AC/DC coupling, threshold level, and counter or period mode. Tach waveforms can be captured in realtime just like any other analog input, allowing real-time troubleshooting of tachometers. Tach inputs are used by eZ-Analyst and eZ-TOMAS software to determine relationships between frequency domain input channels and a known input frequency source.

Analog Channel Expansion

The ZonicBook’s 8 built-in channels can be expanded in 8-channel increments by attaching the WBK18 option, up to a total of 56 analog input channels. Each WBK18 adds 8 channels having the identical features as the ZonicBook’s 8 built-in channels. Unlike other analyzers, expansion channels are nearly one third of the cost of the main unit, and thus a large system can be assembled with increasingly lower cost per-channel. Each WBK18 adds approximately 1.5 inches (3.81 cm) in height to the system and 1.3 kg (2.9 lbs) in weight.

Specifications

General

- **Environment:** Operating: 0˚ to 50˚C, 0˚ to 95% RH, non-condensing
 Storage: -20˚ to 70˚C
- **Power Consumption:** 2.3A max @ 15 VDC
- **Input Power Range:** 10 to 30 VDC, or 100 to 240 VAC
- **Vibration:** MIL STD 810E, categories 1 and 10
- **PC Communication:** 10/100BaseT Ethernet
- **Dimensions:** 285 mm W x 220 mm D x 70 mm H (11” x 8.5” x 2.7”)
- **Weight:** 2.38 kg (5.25 lbs)
- **Throughput Rate:** >2 Mbytes/s
- **Internal Data Buffer:** 1 Msample built-in, 64 Msample optional (factory installed)

Analog Inputs

- **Channels:** 8 single-ended input channels, expandable up to 56 channels with six WBK18 modules
- **Input Connector:** 1 BNC per channel
- **Input Impedance:** 200k Ohm (single-ended)
- **Input Coupling:** AC, DC (software programmable per channel)
- **High-Pass Filter:** 0.1 Hz or 1 Hz software programmable
- **Input Ranges:** ±25V (DC coupled only), ±5V, ±2.5V, ±1V, ±500 mV, ±250 mV, ±100 mV, ±50 mV, ±25 mV
- **Overrange Indication:** Front panel, one LED per channel, software status

Low-Pass Filter

- **Type:** 8-pole Butterworth with simultaneous sample-and-hold (SSH)
- **Cutoff Frequency (Fc):** 10 Hz to 200 kHz in 1-2-5 progression
- **Alias Rejection:** 75 dB min
- **Channel-to-Channel Phase Matching:** 1˚ typ, 2˚ max
- **Unit-to-Unit Phase Matching:** 1˚ typ, 2˚ max
- **SS&H Latency:** 100 ns max
- **Amplitude Accuracy:** ±0.5 dB (Fm ≤ Fc/2)

<table>
<thead>
<tr>
<th>Accuracy at 0˚ to 50˚C (1˚ to 122˚F)</th>
<th>±0.5 dB (Fm ≤ Fc/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25V</td>
<td>±0.50</td>
</tr>
<tr>
<td>5V</td>
<td>±0.15</td>
</tr>
<tr>
<td>2.5V</td>
<td>±0.15</td>
</tr>
<tr>
<td>±1V</td>
<td>±0.15</td>
</tr>
<tr>
<td>±500 mV</td>
<td>±0.15</td>
</tr>
<tr>
<td>±250 mV</td>
<td>±0.15</td>
</tr>
<tr>
<td>±100 mV</td>
<td>±0.15</td>
</tr>
<tr>
<td>±50 mV</td>
<td>±0.15</td>
</tr>
<tr>
<td>±25 mV</td>
<td>±0.20</td>
</tr>
</tbody>
</table>

* Conditions for Low-Pass Filter Phase-Matching
 8-pole LPF mode, 0.1 Hz or DC HPF mode
 1 Hz ≤ Fm ≤ Fc/2
 200 Hz ≤ Fc ≤ 20 kHz

Condition for Amplitude Accuracy

For Fm <20 kHz
Signal Connection:
- Female DB9

Triggers:
- AC, AC with ICP or DC, programmable on a per-channel basis

Trigger Input (TTL Compatible):
- Connector: BNC
- Input Signal Range: 0 to 5V, TTL compatible
- Input Characteristics: TTL compatible with 10K Ohm pull-up resistor
- Input Protection: Zener clamped, 0.7V to +5V
- Latency: 300 ns max

Conditioned Analog Outputs:
- Each analog input signal is provided as a conditioned analog output on the rear panel
- Channels: 8
- Signal Connection: Female DB9
- Amplitude: 0 to +5V max
- Output Impedance: 50 Ohm
- Protection: 26V transient voltage suppressor

Source Output (Excitation Source):
- Channels: 1
- Signal Connection: BNC
- Frequency Range: 1 Hz to 5 kHz
- Frequency Resolution: 0.01 Hz
- Amplitude Settings (p-p): 5V, 2V, 1V, 500 mV, 200 mV, 100 mV, 0 mV
- Waveform Modes: Continuous sine, Sweep sine
- Output Impedance: 50 Ohm
- Accuracy: ±0.1 dB

Analog Triggering:
- Hysteresis Level: 1/600 of the comparator range
- Maximum Trigger Latency
 - Pre-Trigger: 300 ns + T, where T equals the pre-trigger scan period
 - Post-Trigger: 300 ns
- Trigger Jitter
 - Pre-Trigger: 50 ns + T, where T equals the pre-trigger scan period
 - Post-Trigger: 50 ns

Tachometer Inputs:
- Channels: 4 differential
- Connector: BNC
- Input Impedance: 20 Ohm SE, 40K Ohm DE
- Input Voltage Range: -50V to +50V specified, -75V to +75 maximum
- Resolution (V/bit): 0.002307
- DC Accuracy: ±0.25% of reading + 200 mV offset
- Noise: 5 mVrms (typical); 10 mVrms (maximum)
- Common Mode Rejection: ≤-70 dB typ
- Hysteresis Level
- Analog Triggering
- Amplitude Settings (p-p): 0 to +5V, no external pullup required; 0 to +30V, with external pullup resistor
- Output Resistance: 10 Ohms maximum
- Input Characteristics: TTL-compatible; can be scanned along with any other channel

Ordering Information:

Description
- 8-channel vibration measurement system with one eZ-Series software package:
 - Includes eZ-Analyst: ZonicBook/618EA
 - Includes eZ-Balance: ZonicBook/618EZB
 - Includes eZ-TOMAS: ZonicBook/618EZT
- Includes eZ-NDT: ZonicBook/618EZNDT

Battery/DC UPS option:
- DBK34A
- WBK30

Accessories & Cables:
- Additional handle (one is included)
- Tough, rugged, and lightweight carrying case
- HA-111
- Ethernet patch cable, 1.5 ft.
- CA-242
- Ethernet patch cable, 7 ft.
- CA-242-7
- CE Compliant Cables:
 - 1 male BNC to male BNC: CA-150-1
 - 8 male BNC to male BNC: CA-150-8

Software:
- Real-time vibration analysis and recording software: eZ-Analyist
- Machine vibration monitoring software: eZ-TOMAS
- Machine balancing software: eZ-Balance
- Quality inspection software: eZ-NDT

Related Products:

Hardware:
- WaveBook: WBK18
- WBK30
- DBK34A
- DBK65

Software:
- eZ-Analyst
- eZ-TOMAS
- eZ-Balance
- eZ-NDT
- eZ-FrequencyView

For complete information on accessories and cables, visit www.iotech.com/acc

HA-212 – Tough, rugged, and lightweight carrying case designed for applications where the system may be exposed to harsh environmental conditions, or often transported from one location to another.