

ADAM-3016 Strain Gauge Input Module

User's Manual

ADAM and the ADAM logo are trademarks of Advantech

Part no. 2000016000 Printed in Taiwan 1st Edition August 1997

Introduction

ADAM-3016 is a DIN rail-mounted strain gauge input signal conditioning module with 1000 $V_{\rm DC}$ 3-way isolation between input, output and power. The switch configurable input and output offers flexible, wide ranging capability for strain gauge.

ADAM-3016 is equipped with a power LED to monitor the line power and a DC-to-DC converter status and 3 VR (ZERO, SPAN, EXCI) to calibrate input/output range and excitation voltage.

The ADAM-3016 features three-way isolation. The power supply that drives the module's input circuitry and output circuitry is internally isolated, enabling ADAM-3016 to offer true channel-to-channel isolation.

ADAM-3016's input bandwidth is typically 2.4 kHz. The ADAM-3016 is powered by a single +24V_{DC} input. Power can be easily connected from the adjacent modules, making the wiring simple and easy to maintain. The ADAM-3016 can be mounted on a DIN rail and operate in environments with high humidity and wide temperature variation.

Features

- 1000 $V_{_{DC}}$ (fully-isolated)
- Easy input/output range configuration
- Flexible DIN-rail mounting
- Low power consumption:
 - \pm 1.85 W (voltage output) \pm 2.15 W (current output)
 - £ 2.15 W (current output)
- –10° to 70° C operating temperature range
- \bullet Operates from a single +24 $V_{_{\rm DC}}$ input

Specifications

Voltage specifications

- Electrical input: ± 10 mV, ± 20 mV, ± 30 mV, ±50 mV, ±100 mV
- Excitation voltage: 1 ~ 10 V_{DC} (60 mA max) (factory default 10 V)

Output

- Voltage output Bipolar: ±5 V, ±10 V Unipolar: 0 ~ 10 V Impedance: < 50 W
- Current output

Current: 0 ~ 20 mA Current load resistor: 0 ~ 500 w (source)

Specifications

General

- Three-way isolation: 1000 V_{DC}
- Accuracy: ±0.1% of full range
- Bandwidth: 2.4 kHz (typical)
- Stability (temperature drift): 150 ppm (typical)
- Isolation mode rejection: >100 dB @ 50 Hz/60 Hz
- Operation temperature range: -10° to 70° C

Power

- Range: 24 V_{DC} ±10%
- Consumption: £ 1.85 W (voltage output)

£ 2.15 W (current output)

Ordering Information

- ADAM-3016: Isolated strain gauge signal conditioning module
- ADAM-3920: 20-pin wiring adapter
- ADAM-3937: 37-pin wiring adapter
- ADAM-4350: Intelligent calibrator
- PWR-242: Switching power supply for DIN rail mounting

Configuration

Figure 1 shows the terminal wiring of ADAM-3016. Positive power terminals 9 and 7 are internally connected, as are negative terminals 12 and 10. Power can be connected through the adjacent modules, making wiring much easier. ADAM-3016 uses single +24 V_{DC} . Table 1 and table 2 show the switch positions to configure input and output range. The I/O configuration switches are located inside the module. To reach the switches, you need to remove the DIN-rail bracket by sliding it down.

Figure 1: Terminal wiring diagram

Input Range (SW2)											
Range	1	2	3	4	5						
+/- 10mV	On										
+/- 20mV		On									
+/- 30mV			On								
+/-50mV				On							
+/- 100mV					On						

Table 1: Input range setting (SW2)

Output range setting (SW1)

		Output Range (SW1)										
	Range	1	2	3	4	5	6	7	8			
*	±5 V	n		n					n			
	±10 V	n		n								
	0 ~ 10 V	n		n				n				
	0 ~ 20 mA		n		n			n				

■: ON

Table 2: Output range setting (SW1)

 * Factory default setting

Calibration for input/output

1. Disconnect power and set the input range (SW2) and output range (SW1) to the desired setting, then apply the power.

**Define the following variables for calibration use.

--Low_cali_input = Min_input + Full Scalar Input * 0.05;

--High_cali_input = Max_input - Full Scalar Input * 0.05;

--Low_cali_output = Min_output + Full Scalar Output * 0.05;

--High_cali_output = Max_output - Full Scalar Output * 0.05;

- Input the Low_cali_input signal;read the Low_real_output signal;
- Input the High_cali_input signal;read the High_real_output signal;
- Adjust variable resistor of SPAN and repeat step 2 & 3 to meet the following condition

(High_cali_output + Low_cali_output) = (Low_real_output + High_real_output)----eq1

5. Adjust variable resistor of ZERO and repeat step 2 & 3 to meet the following condition

```
Low_real_output = Low_cali_output---eq2
```

High_real_output = High_cali_output----eq3

6. If eq2, eq3 fail to meet your requirements, repeat step 4,5 until success in step 5

Calibration for excitation voltage

- 1. Disconnect excitation voltage from gauge (for safety)
- 2. Adjust variable resistor of EXCI according to your needs
- 3. Disconnect power and apply excitation voltage to gauge, then apply the power.
- 4. Finely tune excitation voltage according to your needs as in step 2

Dimensions

