
User Manual
UbiQ

Scenario Manager

User Manual V1.03

Copyright Notice
This document is copyrighted, 2006, by Advantech Co., Ltd. All rights are reserved.
Advantech Co., Ltd. reserves the right to make improvements to the products
described in this manual at any time without notice. No part of this manual may be
reproduced, copied, translated or transmitted in any form or by any means without
the prior written permission of Advantech Co., Ltd. Information provided in this man-
ual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes
no responsibility for its use, nor for any infringements upon the rights of third parties
which may result from its use.

Acknowledgements
IBM and PC are trademarks of International Business Machines Corporation.
Intel is a trademark of Intel Corporation.
MS-DOS and Windows are trademarks of Microsoft Corporation.
ActiveX, Visual Basic, Excel, Access and Visual C++ are trademarks of Microsoft
Corporation.
All other product names or trademarks are the properties of their respective owners.

Advantech Customer Services
Each and every Advantech product is built to the most exacting specifications to
ensure reliable performance in the harsh and demanding conditions typical of indus-
trial environments. Whether your new Advantech equipment is destined for the labo-
ratory or the factory floor, you can be assured that your product will provide the
reliability and ease of operation for which the name Advantech has come to be
known. Your satisfaction is our primary concern. Here is a guide to Advantech’s cus-
tomer services. To ensure you get the full benefit of our services, please follow the
instructions below carefully.

Technical Support
We want you to get the maximum performance from your products. So if you run into
technical difficulties, we are here to help. For the most frequently asked questions,
you can easily find answers in your product documentation. These answers are nor-
mally a lot more detailed than the ones we can give over the phone.
So please consult this manual first. If you still cannot find the answer, gather all the
information or questions that apply to your problem, and with the product close at
hand, call your dealer. Our dealers are well trained and ready to give you the support
you need to get the most from your Advantech products. In fact, most problems
reported are minor and are able to be easily solved over the phone.
In addition, free technical support is available from Advantech engineers every busi-
ness day. We are always ready to give advice on application requirements or specific
information on the installation and operation of any of our products.
UbiQ Scenario Manager User Manual ii

Limited Warranty
Advantech Corporation does not warrant that the UbiQ Scenario Manager software
utility package will function properly in every hardware/software environment. Advan-
tech Corporation makes no representation or warranties of any kinds whatsoever
with respect to the contents of this manual and specifically disclaims any implied war-
ranties or fitness for any particular purpose. Advantech Corporation shall not be held
liable for errors in this manual or for incidental or consequential damages in connec-
tion with the use of this manual or its contents. Advantech Corporation reserves the
right to revise this manual at any time without prior notice.

About This Manual
Advantech UbiQ Scenario Manager software is a comprehensive, flexible human
machine interface application environment, that supports the functions and utilities to
develop all types of automation applications in the Windows XP, and Windows CE
environment. UbiQ Scenario Manager software provides an windows-based, mouse
driven system for designing Web-Enabled Graphic-Interactive System.

Organization of this Manual

Chapter 1, Introduction gives a general background to the UbiQ platform. The
system architecture is explained, and the product’s main features are intro-
duced. Installation of the software is explained.
Chapter 2, Getting Start explains how to use UbiQ platform and complete some
of the most common tasks within UbiQ Scenario Manager software package.
Chapter 3, Tutorial explains how to complete the basic skills that you need to
use the UbiQ platform. In addition, there are step-by-step tutorials that explain
how to complete simple web-enabled system within the UbiQ platform.
Chapter 4, Basics of Smart-C Script Language explains the basics of the Smart-
C script language. In this chapter, you could learn the statements and syntax of
C languages.
Chapter 5, Functions Reference explains the UbiQ platform supporting func-
tions list, you can call these functions in your programs or CGI scripts.
iii UbiQ Scenario Manager User Manual

UbiQ Scenario Manager User Manual iv

Contents
Chapter 1 Introduction..1

1.1 Overviews ... 2
1.1.1 Contents.. 2

1.2 System Architecture .. 2
1.2.1 Module Description ... 2

1.3 Installation ... 3
1.3.1 PC System Requirements... 3
1.3.2 Installing UbiQ Scenario Manager Utility 3

Figure 1.1 UbiQ Scenario Manager Installation Welcome
Screen .. 4

Figure 1.2 Choose Destination Location Screen 4
Figure 1.3 Select Program Folder Screen 5
Figure 1.4 Setup Complete Screen ... 5

1.3.3 Start Menu Shortcuts .. 6
1.4 How Does UbiQ Work? ... 6

Chapter 2 Getting Started.....................................7
2.1 Quick Start to UbiQ-230 platform .. 8
2.2 Seek Ubiq-230 Devices... 9
2.3 Information of Connected UbiQ... 11
2.4 Control of Connected UbiQ ... 12
2.5 Explorer of Connected UbiQ ... 13
2.6 Scenarios of Connected UbiQ... 16
2.7 Lighting of Connected UbiQ .. 23
2.8 Controller Manager ... 26
2.9 Function Manager Page.. 28

Chapter 3 Tutorials ...31
3.1 Tutorials .. 32
3.2 Define your user interface on UbiQ-230.. 32
3.3 Web-enabled UI Access.. 38

Chapter 4 Basic of Smart-C Script Language ..41
4.1 Elements of C.. 42

4.1.1 Tokens .. 42
4.1.2 Comments... 42
4.1.3 Keywords .. 43
4.1.4 Constants.. 43
4.1.5 Hex-decimal Integer Constant .. 43
4.1.6 String literals ... 43
4.1.7 Punctuation and special characters .. 43

4.2 Program Structure... 44
4.2.1 The main function and program execution.................................. 44
4.2.2 Name spaces .. 44

4.3 Declarations and Types .. 45
4.3.1 Overview of declarations... 45
4.3.2 Type specifiers.. 45

4.4 Expressions and Assignments .. 46
4.4.1 Operators .. 46
v UbiQ Scenario Manager User Manual

4.4.2 Operator precedence.. 46

Chapter 5 Functions Reference 57
5.1 Summary Tables... 58
5.2 Support Functions... 61

5.2.1 atof.. 61
5.2.2 atoh... 61
5.2.3 atoi .. 62
5.2.4 close ... 62
5.2.5 date... 63
5.2.6 debug.. 63
5.2.7 eof... 64
5.2.8 filecopy.. 64
5.2.9 ftoa.. 65
5.2.10 GetScenarioReg ... 65
5.2.11 GetFileFromHttp ... 66
5.2.12 getenv ... 66
5.2.13 HelpWindow.. 67
5.2.14 itoa .. 67
5.2.15 LoadBMP.. 68
5.2.16 LoadBMPByValue... 69
5.2.17 OpenPort .. 69
5.2.18 open.. 70
5.2.19 PlaySound .. 71
5.2.20 printf.. 71
5.2.21 read... 75
5.2.22 readln.. 76
5.2.23 seek .. 77
5.2.24 sendComData... 78
5.2.25 setdebug... 79
5.2.26 SetupTime .. 79
5.2.27 ShowText.. 80
5.2.28 Sleep... 80
5.2.29 sprintf .. 81
5.2.30 strcpy .. 82
5.2.31 strlen ... 83
5.2.32 time... 83
5.2.33 write .. 84
5.2.34 writeln ... 85
UbiQ Scenario Manager User Manual vi

Chapter 1

1 Introduction

1.1 Overviews
Congratulations on your purchase of Advantech’s UbiQ-230 product for developing
scenario control for web-enabled solutions of home automation. Advantech UbiQ-
230 product is a comprehensive, flexible web-enabled controlling platform that sup-
ports the functions and utilities to develop all types of automation applications on e-
home in the Windows XP, and Windows CE environment. UbiQ-230 products provide
scenario web-based systems including Web server, remote controlling & accessing
functions and CGI-script to let your devices to be connected to Internet/Intranet.
UbiQ-230 is extremely flexible and easy to use. The client could use Internet Browser
to get/set the information of devices. A list of UbiQ devices will be automatically
probed and shown on your UbiQ Scenario Manager utility screen. Controllers°Ø and
devices’ functions and arguments are provided to you through the controller°Øs list.
You can simply add/edit/delete functions for each controller to perform specific user
defined functions; you can arrange those functions as a strategy, to manipulate the
control programs for each device. You can also modify each controller’s network con-
figurations and port specifications via UbiQ Scenario Manager utility which runs on
any control units. In addition to be easy to use, UbiQ-230 is built-in C interpreter to
strengthen the ability to design complex calculation or analysis.
The UbiQ-230 kernel is a multi-threaded engine for optimal performance. It provides
you plug-and-play connectivity with your devices, including lighting controllers, digital
in/out controllers, and other automated devices. It saves a lot of effort and time when
developing your applications. The UbiQ platform ensures that you can integrate your
process data into existing e-Home information systems throughout your home.
In addition, UbiQ Scenario Manager software utility leverages 32-bit Windows°Ø pre-
emptive multi-tasking capability to support Windows XP environments.

1.1.1 Contents
System architecture
Installation
How does UbiQ-230 platform work?

1.2 System Architecture
We designed UbiQ-230 platform with a scenario Web-based
and open integrated architectures. The open platform is simple to configure and
allows you to easily integrate automation system with other controllers and devices in
your environment.

1.2.1 Module Description

1.2.1.1 Compact Embedded Web Server
Web Server is built-in on UbiQ-230 products. You could connect UbiQ-230 products
by Internet Browser, and also get/set the connected devices’ information.

1.2.1.2 C Script Engine
C Script Engine is the interpreter of C-language. The UbiQ-230 runs scenarios con-
trolling programs after power-up. Controlling programs are interpreted as C by C
Script Engine. In addition, CGI(Common Gateway Interface) scripts, are the interface
of the web-server and connected devices, also are interpreted as C by C Script
Engine.
UbiQ Scenario Manager User Manual 2

C
hapter 1

Introduction
1.2.1.3 UbiQ Scenario Manager Software Utility
UbiQ Scenario Manager utility is used remotely to configure and control UbiQ plat-
form. When using UbiQ-230 in the first time, you must configure the name and IP
address for the UbiQ device. And you need to add the controllers/devices connected
UbiQ, if these controllers/devices are not in the default list. Then you could add these
controllers/devices to UbiQ and test them by the UbiQ Scenario Manager utility.

1.3 Installation
Web server and C script engine is built-in on UbiQ platform. So you don’t install any-
thing in the UbiQ product.
UbiQ Remote Scenario utility is the client for configuring and controlling UbiQ devices
remotely, you must install it into a PC system.

1.3.1 PC System Requirements
OS : Microsoft Windows XP
RAM : at least 128 MB memory
Disk space: at least 4 MB space
CPU: Intel Pentium II processor 400 MHz or higher
Display: VGA resolution or higher
Microsoft-compatible mouse
Ethernet port

1.3.2 Installing UbiQ Scenario Manager Utility
UbiQ Scenario Manager utility ships with an installation program that helps you install
the program to your computer.
Installation can normally be completed within two minutes.
1. Run the UbiQ Scenario Manager utility installation program at:
 d:\Scenario\setup.exe
 where “d” is the drive letter of your CD-ROM drive.
2. The Welcome screen loads. Click the Next button.
3 UbiQ Scenario Manager User Manual

Figure 1.1 UbiQ Scenario Manager Installation Welcome Screen

3. Select a location where you want to install the UbiQ Scenario Manager utility in
the Choose Destination Location window. The default location is:

 C:\Program Files\Advantech\UbiQ-230 Scenario manager

Figure 1.2 Choose Destination Location Screen

4. The installation program will create program shortcuts on your Windows Start
menu so that you can easily launch the program. The default program folder is:

 UbiQ-230 Scenario Manager
 If you want to have the shortcuts made in a different folder, type it or select it in

the Select Program Folder dialog box.
UbiQ Scenario Manager User Manual 4

C
hapter 1

Introduction
Figure 1.3 Select Program Folder Screen

5. UbiQ Scenario Manager utility is now installed on the computer; you can start
using the program.

Figure 1.4 Setup Complete Screen

Uninstalling UbiQ Scenario Manager
1. Select Settings | Control Panel from the Windows Start menu and then double-

click the the Add/Remove Programs icon.
2. Select the item UbiQ Scenario Manager utility and then click the Add/Remove...

button.
3. Click the Yes button in the Confirm File Deletion dialog box.
4. The un-installation program removes the program files and registry entries from

your computer. Click the OK button when the un-installation program finishes.
5 UbiQ Scenario Manager User Manual

1.3.3 Start Menu Shortcuts
The UbiQ Scenario Manager utility installation program creates the following program
shortcuts on the computer’s Start menu.
The links are the following:

UbiQ-230 Scenario Manager : The program folder.
Scenario : The UbiQ Scenario Manager utility shortcut.

1.4 How Does UbiQ Work?
UbiQ platform includes two parts: controlling server and remote utility. The controlling
server is the hardware body plus web server, C Script Engine, and scenarios pro-
gram softwares. UbiQ device has one Ethernet port and 1 RS485 port. You can con-
nect PC-based controllers/devices, and lighting controllers to UbiQ device by these
ports. If data of the connected devices are periodic, you could put the controlling pro-
grams on UbiQ device to collect these data. You also could get these data or control
these devices by Internet Browser anywhere anytime. Via CGI programs, you even
setup connected devices to control their behaviors remotely.
UbiQ platform is designed to fit the following purposes:

Web-based automation system
Data acquisition provider and access controllers through Internet Browser
Enable legacy controllers to Internet
Provide remote accessing control
Easy to configure connected controllers
Simple to develop homepages combined with controller°Øs data
Offer data to other applications

The UbiQ Scenario Manager utility is the client to configure and control the UbiQ plat-
form. It could configure multi-UbiQ devices and run controlling programs to control
connected devices.
UbiQ Scenario Manager User Manual 6

Chapter 2

2 Getting Started

2.1 Quick Start to UbiQ-230 platform
As a quick introduction to using UbiQ-230 platform, complete the following procedure
to run UbiQ-230 and scenario utility that was copied to your computer°Øs hard disk
drive during the software installation.

1. Power on the UbiQ-230 , plug-in RJ45 ethernet connector to it and be sure that
UbiQ-230 is on the local network.

2. Make sure that your computer is on local network.
3. Launch the UbiQ scenario utility.
4. Click on the menu item ”Seek thru Intranet” key and the UbiQ devices on your

local network will be probed and linked automatically.
5. Select the UbiQ device, the UbiQ information will be displayed. This window

includes five pages: Information, Control, Explorer, Scenario, and Debug.
6. Select the Information page, modify your UbiQ-230 name, IP address or DHCP

enabled. Then click the Set button. Now the UbiQ-230 will save your setting val-
ues.

7. See the next sessions to learn how to control the UbiQ-230.

The build-in functions shipped with UbiQ-230 can help you to accomplish some basic
controlling scheme. You can also code your own functions in Controller menu to
enhance the control over such controllers, which will be described in Chapter 4, “Bas-
cics of Smart-C Script Language” and Chapter 5, “Functions Reference”. The control
program is a collection of functions to perform specific controlling strategy toward
each I/O. Before using the newly designed functions, the CGI Syntax check is pro-
vided for syntax verification. Those functions are linked and called within the most
popular programming language - C. For easier implementations, a C interpreter envi-
ronment is provided. In this way, users can change properties according to their
needs. From small applications interfacing only a few lines of codes, through full-
scale industrial control systems running many I/O Devices simultaneously, UbiQ-230
provide you with the quickest and most efficient HMI solutions.
The following sections overview the basic functions for developing your solutions with
UbiQ-230.
UbiQ Scenario Manager User Manual 8

C
hapter 2

G
etting

S
tarted
2.2 Seek Ubiq-230 Devices
While you move the mouse cursor on the item “Connected Ubiq Platforms” and press
right-button of mouse, the popup menu will be displayed on the screen.

There are 4 items on the popup menu: “Seek thru Intranet”, “Seek thru COM Port”,
“Seek thru Internet”, and “Property...”.

“Seek thru Intranet” : Search the UbiQ devices on the local network. Application
uses the broadcast UDP packet to get the UbiQ device’s response on the net-
work.
“Seek thru COM Port” : Search the UbiQ device on the host serial port. The port
setting is defined on “Property...” Window.
“Seek thru Internet” : Search the UbiQ device on the internet. Users need to
specify the IP address for the UbiQ devices. These IP addresses are added on
“Property...” Window.
“Property...” : The ”Seek Property” window will be popup. There are several
fields and buttons need be specified by users.
– “Password” : Control Access Password for UbiQ device.
– “Connected Port” : Two ports “COM1:” and “COM2:” can be chosen.
– “Baud Rate” : Define baud rate for the connected port.
– “Seek IP List” : Internet IP of UbiQ devices. Double-Click the IP will enter edit-

mode for IP address.
– “Add” : Add a Internet IP address to IP List.
– “Delete” : Delete the current IP item on the IP List.
9 UbiQ Scenario Manager User Manual

For example, there are 2 UbiQ devices on the local network and select “Seek thru
Intranet” item. Then the UbiQ devices will be added to the list.
UbiQ Scenario Manager User Manual 10

C
hapter 2

G
etting

S
tarted
2.3 Information of Connected UbiQ
Click one item of Connected Ubiq Platform, and the information of the UbiQ device
will be shown on the window:

“Device Name” field can be edited for the name of UbiQ device.
“DHCP Enablde” checkbox is switch on/off for DCHCP server exist or not on the
LAN. If “DHCP Enabled” is set to off, then the items of IP parameters can be
edited by users.

“Set” button : notify the modified messages to UbiQ device.
“Get Time” button : get the current time of UbiQ device.
“Set Local Time” button : set the host PC time to UbiQ device.
“H/W Rest” button : launch the H/W reset command to UbiQ device.
“Get MacID” button : get the MacID address of UbiQ device.
“Set MacID” button : set the MacID address to UbiQ device.
“Bitmap Filename” field : specify the boot logo bitmap filename.
“Set Logo” button : set the boot logo bitmap to UbiQ device.
11 UbiQ Scenario Manager User Manual

2.4 Control of Connected UbiQ
The “Control” page will enables you to access the UbiQ device remotely by mouse
input.

“Get Screen” button : Get the current screen from the UbiQ device.

“Start Mouse Access” button : Control the UbiQ device remotely by this page. All
mouse move or clicks will pass to UbiQ device when the mouse location is on
the display area. When the function is enabled, the caption of the button will be
changed to “Stop Mouse Access”.
UbiQ Scenario Manager User Manual 12

C
hapter 2

G
etting

S
tarted
“Stop Mouse Access” button : Stop to control the UbiQ device remotely.

2.5 Explorer of Connected UbiQ
The “Explorer” Page enables you to access file system of the UbiQ device remotely.

When you move the cursor on the file view window and press the right-button of
mouse, a popup menu is shown:
13 UbiQ Scenario Manager User Manual

“Copy To...” menu item: Select this item and a dialog will be prompt on screen:

Choose the folder and specify your new filename you want to save. This function is
just copy a file from UbiQ device to your PC side.

“Add From...” menu item: Select this item and a dialog will be prompt on screen:

Choose the folder and a file you want to add to UbiQ device. This function is just copy
a file from PC side to UbiQ device.

“Execute” menu item: Select this item and this file will be executed on UbiQ
device.
UbiQ Scenario Manager User Manual 14

C
hapter 2

G
etting

S
tarted
“Rename...” menu item: Select this item and a dialog will be prompt on the
screen:

Input the new file name you want to rename and press OK button to confirm or Can-
cel button to disable this action.

“Delete” menu item: Select this item and this file on UbiQ device will be deleted.
“New Folder...” menu item: Select this item and a dialog will be prompt on the
screen:

Input the new folder name you want to create and press OK button to confirm or Can-
cel button to disable this action.

“Go To Parent Folder” button: Click this button, then UbiQ device will go to par-
ent folder and file explorer area will be refreshed.
“Refresh” button: Click this button, then file explorer area will be refreshed with
current folder file list got from UbiQ device.
“Upgrade” button: Click this button, then a dialog will be prompt on the screen:
15 UbiQ Scenario Manager User Manual

Choose the correct platform engine utility and press OK button to confirm or press
Cancel button to cancel this action. Please take care to use this function. It could
destroy the UbiQ device program if you choose the wrong file to upgrade.

2.6 Scenarios of Connected UbiQ
The Scenario page will let you configure the user interface and control flow to UbiQ
device. You need to prepare the bitmaps for display and write the controlling codes
for relative connected controllers. We provide a sample for your reference. Please
move the mouse cursor to the Scenario area and press right-button. A popup menu
will be prompt:

“Load from UbiQ” menu item: Select this menu item, then the Scenario configu-
ration file will be got and refreshed on scenario display area.
“Load from Local...” menu item: Select this menu item, then the Scenario config-
uration file will be loaded from local disk through below dialog:

“Save to UbiQ” menu item: Select this menu item, then Scenario configuration
file will be transferred to UbiQ device.
“Save to Local...” menu item: Select this menu item, then a dialog window will
be shown as follows:
UbiQ Scenario Manager User Manual 16

C
hapter 2

G
etting

S
tarted

Choose the folder and specify the filename for scenario configuration file.
On the scenario configuration area, there are two basic elements needed to explain:
one is button and the other is script. There are seven buttons physically on the UbiQ-
230, so we need to define display interface and control flow after press these buttons.
Control flow is set according to button style and action script. Display interface is
defined by UI script.

“Scenario Layout” is the root node for scenario configuration. It has several
scripts and seven sub-button needed to be configured.
“UI Script” page is used to define display area. For example, in the “Scenario
Layout” root node will add following scripts on “UI Script” page:

//LoadBMP(0,0,0,240,320,"main\\page1.bmp");
LoadBMP(0,0,0,240,64,"main\\goodmorning.jpg");
LoadBMP(1,0,64,240,64,"main\\video.jpg");
LoadBMP(2,0,128,240,64,"main\\dinning.jpg");
LoadBMP(3,0,192,240,64,"main\\goodnight.jpg");
LoadBMP(4,0,256,240,64,"main\\more.jpg");
“Notify Script” page is used to detect some events happened and notify some actions
by script.
17 UbiQ Scenario Manager User Manual

“IDLE Script” page is used to execute some actions while idle mode timer is active.

“INIT Script” page is used to execute some actions while scenario configuration file is
reset.
UbiQ Scenario Manager User Manual 18

C
hapter 2

G
etting

S
tarted
“Button Option” page is used to define the button style, button hint and button memo.

“Menu Button” radio checkbox: Click this checkbox, and button style will be
changed to MENU button. MENU button means that it has child-buttons for
menu, scenario, or action buttons. For example, we define button 5 as Menu
button, so button 5 still has the “Button Setting” sub-node to define user inter-
face and control flow for its child button nodes.
19 UbiQ Scenario Manager User Manual

“Scenario Button” radio checkbox: Click this checkbox, and button style will be
changed to Scenario button. Scenario button means that it is real button for sce-
nario control and no child-buttons, so we need provide setup methods for con-
figuration mode. For example, we define button 2 as Menu button, so button 2
only has the “Config Setting” sub-node to define user interface and control flow
for its scenario configuration behaviors.
“Action Button” radio checkbox: Click this checkbox, and button style will be
changed to Action button. Action button means that it is real button for some
actions. There are several built-in actions on button as follows:

“UP Action”: Add one degree if the current item is numeral (i.e., the maximum is
bigger than 1) or set to ON flag if the current is switch (i.e., the maximum is
equal 1). Use only on Configuration mode.
“DOWN Action”: Decease one degree if the current item is numeral (i.e., the
maximum is bigger than 1) or set to OFF flag if the current is switch (i.e., the
maximum is equal 1). Use only on Configuration mode.
UbiQ Scenario Manager User Manual 20

C
hapter 2

G
etting

S
tarted
“LEFT Action”: Move current index to the previous item. When the current item
is first, the current index will move to the last item. Use only on Configuration
mode.
“RIGHT Action”: Move current index to the next item. When the current item is
last, the current index will move to the first item. Use only on Configuration
mode.
“RETURN Action”: Change the control flow to parent button node. The user
interface (UI script) of parent button will be executed.
“GOTO TOP Action”: Change the control flow to root button node. The user
interface (UI script) of root button will be executed.
“SAVE Action”: Save current configuration values to the file system. Use only on
Configuration mode.
“SETUPTIME Action”: Change the control flow to the Setup Clock display. In
this display, you can modify current date and time on UbiQ device.

“IP CAM Action” : Change the control flow to the IP CAM display. You should
specify the picture file from IP CAM on °×UI script°±. In this display, you can see
dynamic picture on UbiQ device.
21 UbiQ Scenario Manager User Manual

“Button Hint” edit field: Input the help message for this button. It will be shown
with a item on homepage in Text mode when user views UbiQ device with Inter-
net Browser.
“Button Memos” edit list: Input the memo text for this button.
“Action Script” page is used to access I/O with scripts.

In Script area, you could press the right-button of mouse, and a popup menu will
appear:

“Syntax Check” menu item: Select this menu, then the script engine will check
the script syntax correct or not. If there are some errors on syntax check, a
popup window will be shown:
UbiQ Scenario Manager User Manual 22

C
hapter 2

G
etting

S
tarted
“Save” menu item: Select this item, then this script will be saved to internal
memory.

2.7 Lighting of Connected UbiQ
The Lighting page will let you configure the parameters for dimmers and DO control-
lers connected with UbiQ device. The page is shown as follows:

There are 3 RS485 ID specified:
1. Dimmer 1 ID: Specified the value and is stored to the global variable

g_nRS485ID.
2. Dimmer 2 ID: Specified the value and is stored to the global variable

g_nRS485ID3.
3. ADAM 4050 ID: Specified the value and is stored to the global variable

g_nRS485ID2.
Move the mouse cursor on “Lighting Setting” tree view, a popup menu will be shown:
23 UbiQ Scenario Manager User Manual

“Add...” menu item : Click the item and a dialog will shown as follows:

Input the scenario description and the table for dimmer 1, dimmer2 and DO control-
lers. Press OK to confirm the modification or press Cancel button to cancel the input.
The added scenario item will be a last item on the tree view.

“Insert...” menu item : Click the item and a dialog will shown as follows:
UbiQ Scenario Manager User Manual 24

C
hapter 2

G
etting

S
tarted
Input the scenario description and the table for dimmer 1, dimmer2 and DO control-
lers. Press OK to confirm the modification or press Cancel button to cancel the input.
The added scenario item will be a preceding item above the selected item on the tree
view.

To modify the item, you could double-click the mouse left button.
“Save to UbiQ” button: Click the button, then the Scenario Lighting file will be
got and refreshed on scenario display area.
“Load from UbiQ” button: Click the button, the lighting setting file will transfer to
UbiQ device.
“Load...” button: Click the button, a open dialog will be shown:

“Save As...” button: Click the button, a save as dialog will be shown:
25 UbiQ Scenario Manager User Manual

2.8 Controller Manager
The controller manager enables the user adding and modifying connected controller
I/O access functions.

Move mouse cursor to the Controller Manager area and press right-button of mouse,
then a popup menu will be shown:
UbiQ Scenario Manager User Manual 26

C
hapter 2

G
etting

S
tarted
“Add...” menu item: Select this item, then a dialog window will be shown on the

screen:

Input the new controller name, vendor name, and description on the edit fields, and
then press OK button to confirm or press Cancel button to cancel.

“Edit...” menu item: Select this item and a dialog window with current controller
information will be shown:
27 UbiQ Scenario Manager User Manual

“Delete” menu item: Select this item, then the current controller will be deleted.
“Save” menu item: Select this item, then all controllers information will save to
local file “contrls.ctl”.

After you have modified the information of controllers, you could transfer controllers
data to UbiQ device. Please select one UbiQ device and press right-button of mouse,
then a popup menu is prompt:

“Save Controllers Data to this Ubiq” menu item: Select this item, then the con-
trollers data will be transferred to UbiQ device.

2.9 Function Manager Page
The function manager page of controller manager enables the user adding and mod-
ifying I/O access functions for specified controller. Move the mouse cursor and press
right-button of mouse, then a popup menu will be shown:

“Add...” menu item: Select this item, then a dialog will appear on screen:
UbiQ Scenario Manager User Manual 28

C
hapter 2

G
etting

S
tarted
This dialog has several fields and buttons to let you input the function name, type,
and arguments.

“Function Name” field : Input the function name.
“Return Type” combo-box : Choose one return type of function. The list of func-
tion type are the following:

– void : The function returns none.
– char : The function returns a character.
– int : The function returns a integer.
– double : The function returns a real number.
– string : The function returns a string.
– variant : The function returns a variant variable.
“Add” button : Click this button, then a argument window will be shown:
29 UbiQ Scenario Manager User Manual

Input the new name and type for the argument.
“Delete” button : Click this button, then the current argument will be deleted from
the argument list.
“Delete” menu item: Select this item, then the current function will be deleted
from the function list.

Move the mouse cursor to function editor and press right-button of mouse, then a
popup menu will be prompt:

“Syntax Check” menu item: Select this menu, then the script engine will check
the script syntax correct or not. If there are some errors on syntax check, a
popup window will be shown:

“Save” menu item: Select this item, then this function will be saved to internal
memory.
UbiQ Scenario Manager User Manual 30

Chapter 3

3 Tutorials

3.1 Tutorials
This chapter teaches you how to design a web-enabled system by using Advantech’s
UbiQ-230 device. Firstly, scratch your system charts, decide what controllers used,
collect their communicating protocols, and program what data you want. Secondly,
build a simply but workable web system by Scenario Manager utility and UbiQ-230
device. Finally, improve the web system by adding interesting graphs and associat-
ing controllers’ data with your CGI scripts.

3.2 Define your user interface on UbiQ-230
The product UbiQ-230 is defined as a scenario controller. So the user interface on
the first level should be scenario menu items. The user interface on second level
should show individual volumes for dimmers and DIO points. Suppose that we would
like to implement 9 scenarios (not including welcome and away modes) as follows:

Good Morning
Video / Audio
Dining
Good Night
Party
Romance
Napping
Studying
Tea Time

Because there are only five buttons on UbiQ-230 device, we need to separate sce-
nario modes to more pages. For example, we define 3 pages items UI as follows:
UbiQ Scenario Manager User Manual 32

C
hapter 3

Tutorials
For each scenario mode, we could define 2 pictures to show. One is normal, and the
other is selected.

33 UbiQ Scenario Manager User Manual

We need the “more...” item to indicate more pages on the following.

In the UI Script of °×Scenario Layout°± node, we define UI as follows:
LoadBMP(0,0,0,240,64,"main\\goodmorning.jpg");
LoadBMP(1,0,64,240,64,"main\\video.jpg");
LoadBMP(2,0,128,240,64,"main\\dinning.jpg");
UbiQ Scenario Manager User Manual 34

C
hapter 3

Tutorials
LoadBMP(3,0,192,240,64,"main\\goodnight.jpg");
LoadBMP(4,0,256,240,64,"main\\more0.jpg");
In the UI Script of °×Button 5°± node, we define UI as follows:
LoadBMP(0,0,0,240,64,"main\\party.jpg");
LoadBMP(1,0,64,240,64,"main\\romance.jpg");
LoadBMP(2,0,128,240,64,"main\\napping.jpg");
LoadBMP(3,0,192,240,64,"main\\studying.jpg");
LoadBMP(4,0,256,240,64,"main\\more1.jpg");

After we defined the UI for first level, we should think what the second user interfaces
are. What number circuits of dimmers are used and digit out signals are needed to
trigger? How to display the detailed information user could be understand? One
example is the following:

We defined the style of “Button 1” as Scenario Button. The button hint is set to “Good
Morning Scenario”. This hint will be shown on the Internet Browser.
35 UbiQ Scenario Manager User Manual

Then we begin to write the UI script for “Button 1”.

The code sample is the following:
int nV;
int nDIB;
int nC;
int nI;

g_ConfigPage=2;

PlaySound("\\windows\\default.wav");

nDIB=0;
nC=0;
LoadBMP(nDIB,0,0,240,320,"level2\\level2.jpg");
nDIB=nDIB+1;
LoadBMP(nDIB,0,230,216,20,"level2\\help.jpg");
nDIB=nDIB+1;
HelpWindow(10,232,205,16);

if (g_CurPage==0)
{
 for (nI=0;nI<8;nI=nI+1)
 {
 nV=GetScenarioReg(nC,0);
 LoadBMPByValue(nDIB,7+nI*26,4,22,200,"==LIGHT_BAR4",nV);
 nC=nC+1;
 nDIB=nDIB+1;
 }
UbiQ Scenario Manager User Manual 36

C
hapter 3

Tutorials
 LoadBMP(nDIB,8,210,14,14,"level2\\number\\1_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,35,210,14,14,"level2\\number\\2_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,62,210,14,14,"level2\\number\\3_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,89,210,14,14,"level2\\number\\4_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,115,210,14,14,"level2\\number\\5_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,141,210,14,14,"level2\\number\\6_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,167,210,14,14,"level2\\number\\7_on.bmp");
 nDIB=nDIB+1;
 LoadBMP(nDIB,193,210,14,14,"level2\\number\\8_on.bmp");
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,0);
 LoadBMPByValue(nDIB,4,250,52,65,"level2\\icons\\curtain",nV);
 nC=nC+1;
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,0);
 LoadBMPByValue(nDIB,57,250,52,65,"level2\\icons\\door",nV);
 nC=nC+1;
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,0);
 LoadBMPByValue(nDIB,110,250,52,65,"level2\\icons\\dvd",nV);
 nC=nC+1;
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,0);
 LoadBMPByValue(nDIB,163,250,52,65,"level2\\icons\\window",nV);
 nC=nC+1;
 nDIB=nDIB+1;
 LoadBMP(nDIB,205,306,10,8,"level2\\right.bmp");
 nDIB=nDIB+1;
}
else if (g_CurPage==1)
{
 nV=GetScenarioReg(nC,1);
 LoadBMPByValue(nDIB,8,260,46,50,"level2\\icons\\projector",nV);
 nC=nC+1;
 nDIB=nDIB+1;
37 UbiQ Scenario Manager User Manual

 nV=GetScenarioReg(nC,1);
 LoadBMPByValue(nDIB,59,260,46,50,"level2\\icons\\smoke",nV);
 nC=nC+1;
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,1);
 LoadBMPByValue(nDIB,110,260,46,50,"level2\\icons\\speaker",nV);
 nC=nC+1;
 nDIB=nDIB+1;

 nV=GetScenarioReg(nC,1);
 LoadBMPByValue(nDIB,161,260,46,50,"level2\\icons\\TV",nV);
 nC=nC+1;
 nDIB=nDIB+1;
 LoadBMP(nDIB,1,306,10,8,"level2\\left.bmp");
 nDIB=nDIB+1;
}

3.3 Web-enabled UI Access
There is one default home page present while you connect UbiQ-230 by Internet
Browser. UbiQ-230 device provides three-modes to be accessed by remote client IE.
These modes are “Text Mode”, “Screen Mode” and “Configuration Mode”. If you
would like to access UbiQ-230 device by Internet Browser, please specify the IP
address of UbiQ-230 device and assign the socket port as 8080. For example, If the
IP address of UbiQ-230 device is 172.16.12.45, then you can launch IE for the follow-
ing address:
http://172.16.12.45:8080/
UbiQ Scenario Manager User Manual 38

C
hapter 3

Tutorials
“Text Mode” will display all scenarios with text in the IE window.

“Screen Mode” will show graphic display of UbiQ-230 in the IE window.

39 UbiQ Scenario Manager User Manual

“Configuration Mode” will show graphic display of UbiQ-230 and allow user adjusting
the values of each circuit and DO signals.

UbiQ Scenario Manager User Manual 40

Chapter 4

4 Basic of Smart-C
Script Language

4.1 Elements of C
This section describes the organizations of the Smart-C script programming lan-
guage, including the names, numbers, and characters used to construct a C pro-
gram. The ANSI C syntax labels these components “tokens.” This section explains
how to define tokens and how the interpreter evaluates them.
The following topics are discussed:

Tokens
Comments
Keywords
Identifiers
Constants
String literals
Punctuation and special characters

4.1.1 Tokens
In a C source program, the basic element recognized by the interpreter is the
“token.”. A token is source-program text that the interpreter does not break down into
component elements.
Syntax
token:

keyword
identifier
constant
string-literal
operator
punctuator

The keywords, identifiers, constants, string literals, and operators described in this
section are examples of tokens. Punctuation characters such as brackets ([]), braces
({ }), parentheses (()), and commas (,) are also tokens.

4.1.2 Comments
A “comment” is a sequence of characters beginning with a forward slash/asterisk
combination (/*) that is treated as a single white-space character by the interpreter
and is otherwise ignored. A comment can include any combination of characters from
the representable character set, including newline characters, but excluding the “end
comment” delimiter (*/). Comments can occupy more than one line but cannot be
nested.

Comments can appear anywhere a white-space character is allowed. Since the inter-
preter treats a comment as a single white-space character, you cannot include com-
ments within tokens. The interpreter ignores the characters in the comment. Use
comments to document your code. This example is a comment accepted by the inter-
preter:
/* Comments can contain keywords such as
 for and while without generating errors. */

Comments can appear on the same line as a code statement:
printf("Hello\n"); /* Comments can go here */
UbiQ Scenario Manager User Manual 42

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
The interpreter also supports single-line comments preceded by two forward slashes
(//). Comments beginning with two forward slashes (//) are terminated by the next
newline character that is not preceded by an escape character.
printf("Hello\n"); // Comments can go here

4.1.3 Keywords
“Keywords” are words that have special meaning to the C interpreter. An identifier
cannot have the same spelling and case as a C keyword. The Smart-C language
uses the following keywords:

You cannot redefine keywords.

4.1.4 Constants
A “constant” is a number, character, or character string that can be used as a value in
a program. Use constants to represent floating-point, integer, enumeration, or char-
acter values that cannot be modified.
Syntax
constant :

floating-point-constant
integer-constant
character-constant

Constants are characterized by having a value and a type.

4.1.5 Hex-decimal Integer Constant
Syntax
Hex-decimal-constant:

0xHex-Integer Opt or
0XHex-Integer Opt

4.1.6 String literals
A “string litera” is a sequence of characters from the source character set enclosed in
double quotation marks (" ") or single quotation marks (°Æ°Ø). String literals are
used to represent a sequence of characters which, taken together, form a null-termi-
nated string.
Syntax
string-literal :

"char-sequence opt" or
‘char-sequence opt’

The backslash (\) must be followed with a second backslash (\\) when it appears
within a string.

4.1.7 Punctuation and special characters
The punctuation and special characters in the C character set have various uses,
from organizing program text to defining the tasks that program carries out. They do
not specify an operation to be performed.

break char continue do double
else if for int return
string variant while void
43 UbiQ Scenario Manager User Manual

Syntax
punctuator : one of
 [] () { } = ;
These characters have special meanings in C.

4.2 Program Structure
This section gives an overview of C programs and program execution. Terms and
features important to understanding C programs and components are also intro-
duced. Topics discussed include:

The main function and program execution
Name spaces

4.2.1 The main function and program execution
Every C program has a primary (main) function that must be named main. The main
function serves as the starting point for program execution. It usually controls pro-
gram execution by directing the calls to other functions in the program. A program
usually stops executing at the end of main, although it can terminate at other points in
the program for a variety of reasons. At times, perhaps when a certain error is
detected, you may want to force the termination of a program. To do so, use the
return keyword.
Functions within the source program perform one or more specific tasks. The main
function can call these functions to perform their respective tasks. When main calls
another function, it passes execution control to the function, so that execution begins
at the first statement in the function. A function returns control to main when a return
statement is executed or when the end of the function is reached.
You can declare any function, except for main(), to have parameters. The term
“parameter” or “formal parameter” refers to the identifier that receives a value passed
to a function. When one function calls another, the called function receives values for
its parameters from the calling function. These values are called “arguments”.

4.2.2 Name spaces
The interpreter sets up “name spaces” to distinguish between the identifiers used for
different kinds of items. The names within each name space must be unique to avoid
conflict, but an identical name can appear in more than one name space. This means
that you can use the same identifier for two or more different items, provided that the
items are in different name spaces. The interpreter can resolve references based on
the syntactic context of the identifier in the program.
This list describes the name spaces used in C.

4.2.2.1 Functions of controllers
Function names are allocated in name spaces associated with each controller. That
is, the same identifier can be a component name in any number of controllers at the
same time. Definitions of component names always occur within controller’s name.
Uses of component names always immediately follow the member-selection opera-
tors (.). The name of a function must be unique within the controller, but it does not
have to be distinct from other names in the program.

4.2.2.2 Ordinary identifiers
All other names fall into a name space that includes variables, functions (including
formal parameters and local variables), and enumeration constants. Identifier names
have nested visibility, so you can redefine them within blocks.
UbiQ Scenario Manager User Manual 44

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
4.3 Declarations and Types
This section describes the declaration and initialization of variables, functions, and
types. The C language includes a standard set of basic data types. The following top-
ics are discussed:

Overview of declarations
Type specifiers

4.3.1 Overview of declarations
A “declaration” specifies the interpretation and attributes of a identifier. A declaration
that also causes storage to be reserved for the object or function named by the iden-
tifier is called a “definition.” C declarations for variables, functions, and types have
this syntax:
Syntax
declaration :
type_specifiers declarator ;

Declarations are made up of some combination of type specifiers and declarators.
In the general form of a variable declaration, type-specifier gives the data type of the
variable. The declarator gives the name of the variable, possibly modified to declare
an array. For example,
int fp[20];
declares a variable named fp as a 20-index array to int value.

A declaration must have one declarator. Declarators provide any remaining informa-
tion about an identifier. A declarator is an identifier that can be modified with brackets
([]), or parentheses (()) to declare an array, or function type, respectively. When
you declare simple variables (such as character, integer, and floating-point items),
the declarator is just an identifier.

4.3.2 Type specifiers
Type specifiers in declarations define the type of a variable or function declaration.
Syntax
type-specifier :

void
char
int
double
string
variant

The keyword void specify a function return type. You can use the void type to declare
functions that return no value.
45 UbiQ Scenario Manager User Manual

4.4 Expressions and Assignments
This section describes how to form expressions and to assign values in the C lan-
guage. Constants, identifiers, strings, and function calls are all operands that are
manipulated in expressions. The C language has all the usual language operators.
This section covers those operators as well as operators that are unique to C. The
topics discussed include:

Operators
Operator precedence

4.4.1 Operators
There are three types of operators. A unary expression consists of a unary operator
prepended to an operand. The expression can be either the name of a variable or a
cast expression. If the expression is a cast expression, it must be enclosed in paren-
theses. A binary expression consists of two operands joined by a binary operator. A
ternary expression consists of three operands joined by the conditional-expression
operator.
C includes the following unary operators:
Symbol Name
 - Negation operators
 + Unary plus operator
Binary operators associate from left to right. C provides the following binary opera-
tors:
Symbol Name
 * / % Multiplicative operators
 + - Additive operators
 < > <= >= == != Relational operators
 & | Bitwise operators
 && || Logical operators
 << >> Bit-Shift operators
The conditional-expression operator has lower precedence than binary expressions
and differs from them in being right associative.
Expressions with operators also include assignment expressions, which use unary or
binary assignment operators. The binary assignment operators are the simple-
assignment operator (=) and the compound-assignment operators. Each compound-
assignment operator is a combination of another binary operator with the simple-
assignment operator.

4.4.2 Operator precedence
The precedence and associativity of C operators affect the grouping and evaluation
of operands in expressions. An operator’s precedence is meaningful only if other
operators with higher or lower precedence are present. Expressions with higher-pre-
cedence operators are evaluated first.
Following table summarizes the precedence and associativity (the order in which the
operands are evaluated) of C operators, listing them in order of precedence from
highest to lowest. Where several operators appear together, they have equal prece-
dence and are evaluated according to their associativity. The operators in the table
are described in the sections beginning with Postfix Operators. The rest of this sec-
tion gives general information about precedence and associativity.
UbiQ Scenario Manager User Manual 46

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
Symbol
Type of Operation
Associativity
[] () .
Expression
Left to right
+ ®C
Unary
Right to left
* / %
Multiplicative
Left to right
+ ®C
Additive
Left to right
< > <= >= == !=
Relational
Left to right
& | && || << >>
Logical and Bitwise
Left to right

An expression can contain several operators with equal precedence. When several
such operators appear at the same level in an expression, evaluation proceeds
according to the associativity of the operator, either from right to left or from left to
right. The direction of evaluation does not affect the results of expressions that
include more than one multiplication (*), addition (+), or binary-bitwise (& |) operator
at the same level.
Statements
The statements of a C program control the flow of program execution. In C, as in
other programming languages, several kinds of statements are available to perform
loops, to select other statements to be executed, and to transfer control. Following a
brief overview of statement syntax, this section describes the C statements in alpha-
betical order:

* block statement
* break statement
* continue statement
* expression statement
* for statement
* if statement
* return statement
* while statement

block statement
47 UbiQ Scenario Manager User Manual

A block statement typically appears as the body of another statement, such as the if
statement.

Syntax

block-statement :

{ declaration-list statement-list }

declaration-list :
declaration or
declaration-list declaration

 statement-list :
°°°°°°°°°°statement or
°°°°°°°°°°statement-list statement

If there are declarations, they must come before any statements. The scope of each
identifier declared at the function including the block-statement.
This example illustrates a compound statement:

if (i > 0)
{
 line[i] = x;
 x=x+1;
 i=i-1;
}

In this example, if i is greater than 0, all statements inside the compound statement
are executed in order.

break statement
The break statement terminates the execution of the nearest enclosing for, or while
statement in which it appears. Control passes to the statement that follows the termi-
nated statement.

Syntax

break-statement :

break;

Within nested statements, the break statement terminates only the for, or while state-
ment that immediately encloses it. You can use a return statement to transfer control
elsewhere out of the nested structure.

This example illustrates the break statement:
UbiQ Scenario Manager User Manual 48

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
for (i = 0; i < LENGTH; i=i+1) /* Execution returns here when */
{
 if (lines[i] == 0)
 {
 nLen = i;
 break; /* break statement is executed */
 }
}

The example processes an array of variable-length strings stored in lines. The break
statement causes an exit from the interior for loop after the terminating null character
(0) of each string is found and its position is stored in nLen.

continue statement
The continue statement passes control to the next iteration of the for, or while state-
ment in which it appears, bypassing any remaining statements in the for, or while
statement body. A typical use of the continue statement is to return to the start of a
loop from within a deeply nested loop.

Syntax

continue-statement :

continue;

The next iteration of a for, or while statement is determined as follows:

* Within a while statement, the next iteration starts by reevaluating the expression of
the while statement.
* A continue statement in a for statement causes the first expression of the for state-
ment to be evaluated. Then the interpreter reevaluates the conditional expression
and, depending on the result, either terminates or iterates the statement body.

This is an example of the continue statement:

while (i > 0)
{
 x = sum(i);
 if (x == 1)
 continue;
 y= y+x * x;
 i=i-1;
}

In this example, the statement body is executed while i is greater than 0. First sum(i)
is assigned to x; then, if x is equal to 1, the continue statement is executed. The rest
49 UbiQ Scenario Manager User Manual

of the statements in the body are ignored, and execution resumes at the top of the
loop with the evaluation of the loop°Øs test.

expression statement
When an expression statement is executed, the expression is evaluated according to
the rules outlined in section: Expressions and Assignments.

Syntax

expression-statement :

 expressions ;

An empty expression statement is called a null statement.

These examples demonstrate expression statements.

x = (y + 3); /* x is assigned the value of y + 3 */
x=°±abcdefg°±; /* x is assigned to °×abcdefg°± */
y=sum(x); /* Function call returning value */
z=0xA8; /* z is assigned to the hex value 0xA8 */

for statement
The for statement lets you repeat a statement or compound statement a specified
number of times. The body of a for statement is executed zero or more times until an
optional condition becomes false. You can use optional expressions within the for
statement to initialize and change values during the for statement°Øs execution.

Syntax

for-statement :

for (init-expression ; cond-expression ; loop-expression)
 block-statement

Execution of a for statement proceeds as follows:

* The init-expression, if any, is evaluated. This specifies the initialization for the loop.
There is no restriction on the type of init-expression.
* The cond-expression, if any, is evaluated. This expression must have arithmetic. It
is evaluated before each iteration. Three results are possible:
(1) If cond-expression is true (nonzero), statement is executed; then loop-expression,
if any, is evaluated. The loop-expression is evaluated after each iteration. There is no
restriction on its type. The process then begins again with the evaluation of cond-
expression.
(2) If cond-expression is omitted, cond-expression is considered true, and execution
proceeds exactly as described in the previous paragraph.
UbiQ Scenario Manager User Manual 50

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
(3) If cond-expression is false (0), execution of the for statement terminates and con-
trol passes to the next statement in the program.

A for statement also terminates when a break or return statement within the state-
ment body is executed. A continue statement in a for loop causes loop-expression to
be evaluated. When a break statement is executed inside a for loop, loop-expression
is not evaluated or executed.

This example illustrates the for statement:

for (i = 0; i < MAX; i=i+1)
{
 if (line[i] == '\n')
 new_line=new_lines+1;
}

First i is initialized to 0. Then i is compared with the constant MAX; if i is less than
MAX, the statement body is executed. Depending on the value of line[i], the body of
one or neither of the if statements is executed. Then i is incremented and tested
against MAX; the statement body is executed repeatedly as long as i is less than
MAX.

if statement
The if statement controls conditional branching. The body of an if statement is exe-
cuted if the value of the expression is nonzero. The syntax for the if statement has
two forms.

Syntax

if-statement :

if (expression) block-statement
if (expression) block-statement else block-statement

In the first form of the syntax, if expression is true (nonzero), block-statement is exe-
cuted. If expression is false, block-statement is ignored. In the second form of syntax,
which uses else, the second block-statement is executed if expression is false. With
both forms, control then passes from the if statement to the next statement in the pro-
gram unless one of the statements contains a break, continue.

The following are examples of the if statement:

if (i > 0) {
 y = x / i;
}
else
{
 x = i;
51 UbiQ Scenario Manager User Manual

 y = f(x);
}

In this example, the statement y = x/i; is executed if i is greater than 0. If i is less than
or equal to 0, i is assigned to x and f(x) is assigned to y. Note that the statement
forming the if clause ends with a semicolon.

return statement
The return statement terminates the execution of a function and returns control to the
calling function. Execution resumes in the calling function at the point immediately
following the call. A return statement can also return a value to the calling function.

Syntax

return-statement :

 return(expression) ;

The value of expression, if present, is returned to the calling function. If expression is
omitted, the return value of the function is undefined. The expression, if present, is
converted to the type returned by the function. If the function was declared with return
type void, a return statement containing an expression generates a warning and the
expression is not evaluated.

If no return statement appears in a function definition, control automatically returns to
the calling function after the last statement of the called function is executed. In this
case, the return value of the called function is undefined. If a return value is not
required, declare the function to have void return type; otherwise, the default return
type is int.

This example demonstrates the return statement:

int sum(int num);
int main()
{
 int nSum;
 nSum=sum(100);
 printf(°×The sum(100)=%d°±,nSum);
}

/* Sum the values between 0 and num. */
sum(int num)
{
 int running_sum;
 running_sum = 0;
 while(num>0) {
 running_sum = running_sum + num;
 num = num - 1;
UbiQ Scenario Manager User Manual 52

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
 }
 return(running_sum);
}

In this example, the main function calls one function: sum. The sum function returns
the sum from 1 to num, where the return value is assigned to nSum.

while statement
The while statement lets you repeat a statement until a specified expression
becomes false.

Syntax

while-statement :

 while (expression) block-statement

The expression must have arithmetic type. Execution proceeds as follows:

* The expression is evaluated.
* If expression is initially false, the body of the while statement is never executed, and
control passes from the while statement to the next statement in the program. If
expression is true (nonzero), the body of the statement is executed and the process
is repeated beginning at step 1.

The while statement can also terminate when a break, or return within the statement
body is executed. Use the continue statement to terminate an iteration without exiting
the while loop. The continue statement passes control to the next iteration of the
while statement.

This is an example of the while statement:

 while(num>0) {
 running_sum = running_sum + num;
 num = num - 1;
 }

This example adds running_sum from 1 to num. If num is greater than 0,
running_sum added by num. When num reaches 0, execution of the while statement
terminates.

Functions
The function is the fundamental modular unit in C. A function is usually designed to
perform a specific task, and its name often reflects that task. A function contains dec-
larations and statements. This section describes how to declare, define, and call C
functions. Other topics discussed are:

* Overview of functions
53 UbiQ Scenario Manager User Manual

* Return type
* Arguments

Overview of functions
Functions must have a definition and should have a declaration, although a definition
can serve as a declaration if the declaration appears before the function is called.
The function definition includes the function body °™ the code that executes when
the function is called.

A function call passes execution control from the calling function to the called func-
tion. The arguments, if any, are passed by value to the called function. Execution of a
return statement in the called function returns control and possibly a value to the call-
ing function.

Return type
The return type of a function establishes the size and type of the value returned by
the function and corresponds to the type-specifier. The type-specifier can specify any
fundamental type. If you do not include type-specifier, the return type int is assumed.

The return type given in the function definition must match the return type in declara-
tions of the function elsewhere in the program. A function returns a value when a
return statement containing an expression is executed. The expression is evaluated,
converted to the return value type if necessary, and returned to the point at which the
function was called. If a function is declared with return type void, a return statement
containing an expression generates a warning and the expression is not evaluated.

The following examples illustrate function return values.

/* Sum the values between 0 and num. */
sum(int num)
{
 int running_sum;
 running_sum = 0;
 while(num>0) {
 running_sum = running_sum + num;
 num = num - 1;
 }
 return(running_sum);
}

You need not declare functions with int return type before you call them, although
prototypes are recommended so that correct type checking for arguments and return
values is enabled.

Arguments
The arguments in a function call have this form:

 expression (expression-list) /* Function call */
UbiQ Scenario Manager User Manual 54

C
hapter 4

B
asic ofS

m
art-C

S
criptLanguage
In a function call, expression-list is a list of expressions (separated by commas). The
values of these latter expressions are the arguments passed to the function. If the
function takes no arguments, expression-list should contain the keyword void.

An argument can be any value with fundamental type. All arguments are passed by
value. This means a copy of the argument is assigned to the corresponding parame-
ter. The function does not know the actual memory location of the argument passed.
The function uses this copy without affecting the variable from which it was originally
derived.
The expression-list in a function call is evaluated and the usual arithmetic conver-
sions are performed on each argument in the function call. If a prototype is available,
the resulting argument type is compared to the prototype°Øs corresponding parame-
ter. If they do not match, either a conversion is performed, or a diagnostic message is
issued.

The number of expressions in expression-list must match the number of parameters,
unless the function°Øs prototype or definition explicitly specifies a variable number of
arguments. In this case, the interpreter checks as many arguments as there are type
names in the list of parameters and converts them, if necessary, as described above.

If the prototype°Øs parameter list contains only the keyword void, the interpreter
expects zero arguments in the function call and zero parameters in the definition. A
diagnostic message is issued if it finds any arguments.

The following examples illustrate the function argument.

int main()
{
 int nSum;
 nSum=sum(100);
 printf(°×The sum(100)=%d°±,nSum);
}

/* Sum the values between 0 and num. */
sum(int num)
{
 int running_sum;
 running_sum = 0;
 while(num>0) {
 running_sum = running_sum + num;
 num = num - 1;
 }
 return(running_sum);
}

In this example, the sum function is declared in main to have one argument, repre-
sented by the identifier num, is an int values.
55 UbiQ Scenario Manager User Manual

UbiQ Scenario Manager User Manual 56

Chapter 5

5 Functions Reference

5.1 Summary Tables
The following table summaries the global variables and functions that belong to the
Smart-C Script language. Global variables and functions are grouped by tasks you
might wish to perform.
Global Variables:

Name Description
TRUE Its value is 1
FALSE Its value is 0
FILE_READ Be used by the open function
FILE_RDWR Be used by the open function
FILE_CREATE_NEW Be used by the open function
FILE_CREATE_RW Be used by the open function
SEEK_BEGIN Be used by the seek function
SEEK_END Be used by the seek function
SEEK_CURRENT Be used by the seek function
g_nVar1 Global variable, its type is int, initialized to 0, can be used in your

programs
g_nVar2 Global variable, its type is int, initialized to 0, can be used in your

programs
g_nVar3 Global variable, its type is int, initialized to 0, can be used in your

programs
g_nVar4 Global variable, its type is int, initialized to 0, can be used in your

programs
g_nVar5 Global variable, its type is int, initialized to 0, can be used in your

programs
g_fVar1 Global variable, its type is double, initialized to 0, can be used in

your programs
g_fVar2 Global variable, its type is double, initialized to 0, can be used in

your programs
g_sVar1 Global variable, its type is string, initialized to °×°±, can be used in

your programs
g_sVar2 Global variable, its type is string, initialized to °×°±, can be used in

your programs
g_bConfig Global variable, its type is integer, and set to 1 when entering the

configuration mode
g_ConfigPage Global variable, its type is integer, and set to total configuration

pages on the configuration mode
g_CurPage Global variable, its type is integer, and set to current configuration

page on the configuration mode
CLOCK_SHOW_ID Be used by the LoadBMP function
CLOCK_UNSHOW_ID Be used by the LoadBMP function
SCREEN_REDRAW_ID Be used by the LoadBMP function
g_nComTimeout Global variable, its type is integer.
g_nCurIndex Global variable, its type is integer. It specifies the current index on

the configuration mode
g_nPortID Global variable, its type is integer.
g_nRS485ID Global variable, its type is integer.
g_nRS485ID2 Global variable, its type is integer.
g_nRS485ID3 Global variable, its type is integer.
g_nRS485ID4 Global variable, its type is integer.
UbiQ Scenario Manager User Manual 58

C
hapter 5

Functions
R

eference
FILE I/O Functions:

Data acquisition functions:

String functions:

Debug functions:

Homepage client functions:

Date/Time functions:

g_nIDLETime Global variable, its type is integer. It specifies the IDLE time to
enter the idle mode

g_nReturnTime Global variable, its type is integer. It specifies the return time to
main menu.

Name Description
open Open a file
close Close the open file
read Read data from a file
write Write data to a file
seek Move file pointer
readln Read a line from a file
writeln Write a line to a file
eof Test whether or not end-of-file of a file
filecopy Copy a file to another file

Name Description
OpenPort Open the specified COM port
sendComData Send data to the specified COM port

Name Description
strlen Return the length of a string
strcpy Copy a string to another string
sprintf Format the output to the string
itoa Convert a integer to a string
ftoa Convert a double to a string
atoi Convert a string to integer by decimal type
atoh Convert a string to integer by hexadecimal type
atof Convert a string to a double

Name Description
debug Show the output to the debug window
setdebug Switch the debug mode
printf Format the output to the debug window or web-client

Name Description
printf Format the output to the debug window or web-client
getenv Get the value of the environment variable of web-client

Name Description
date Get the current date string
time Get the current time string
59 UbiQ Scenario Manager User Manual

Display functions:

Scenario Data functions:

Voice functions:

Ethernet functions:

Name Description
LoadBMP Display the specified file on screen
LoadBMPByValue Display the specified file by assigned-value on screen
ShowText Display the notified text on screen
HelpWindow Assign the help caption to the specified coordinate on screen
SetupTime Display and provide the interface to setup the time on screen

Name Description
GetScenarioReg Get item value on the current scenario registry.
SetScenarioInit Set the initialization value of the specified scenario index

Name Description
PlaySound Play the specified sound wave file

Name Description
GetFileFromHttp Get one file from specified homepage
UbiQ Scenario Manager User Manual 60

C
hapter 5

Functions
R

eference
5.2 Support Functions

5.2.1 atof
Syntax

double atof(char* pDest) or
double atof(string sDest)

Parameters
pDest: Specifies the Null-ended character array
sDest: Specifies a string variable.

Description
This function returns the converted double value of the string.

Example
// The example will convert a string to a double value and show them
char pChar[20]; // declare pDest as char[20]
double fValue;

setdebug(TRUE);
pChar=”23.4567”;
fValue=atof(pChar);
debug(“atof(“,pChar,)=”,fValue); // It will show “atof(23.4567)=23.4567”

See Also
itoa, ftoa, atoi, atoh

5.2.2 atoh
Syntax

int atoh(char* pDest) or
int atoh(string sDest)

Parameters
pDest: Specifies the Null-ended character array
sDest: Specifies a string variable.

Description
This function returns the converted value of the string based on hexadecimal.

Example
 // The example will convert a string to a integer and show them
char pChar[20]; // declare pDest as char[20]
int nI;

setdebug(TRUE);
pChar=”20A”;
nI=atoh(pChar);
debug(“atoh(“,pChar,)=”,nI); // It will show “atoh(20A)=522”

See Also
itoa, ftoa, atof, atoi
61 UbiQ Scenario Manager User Manual

5.2.3 atoi
Syntax

int atoi(char* pDest) or
int atoi(string sDest)

Parameters
pDest: Specifies the Null-ended character array
sDest: Specifies a string variable.

Description
This function returns the converted value of the string.

Example
// The example will convert a string to a integer and show them
char pChar[20]; // declare pDest as char[20]
int nI;

setdebug(TRUE);
pChar=”2310”;
nI=atoi(pChar);
debug(“atoi(“,pChar,)=”,nI); // It will show “atoi(2310)=2310”

See Also
itoa, ftoa, atof, atoh

5.2.4 close
Syntax

void close(int hFile)
Parameters

hFile: Specifies the handle referring to open file
Description

This function closes the file associated with handle.
Example

int hFile;
hFile=open(“\\Flash Storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {
// process the file

close(hFile); // close the file
}

See Also
open, read, write, seek, readln, writeln, filecopy, eof
UbiQ Scenario Manager User Manual 62

C
hapter 5

Functions
R

eference
5.2.5 date
Syntax

string date()
Parameters

none
Description

This function returns the current date, its format is fixed as “yyyy/mm/dd”.
Example

string sDate;
setdebug(TRUE);
sDate=date();
debug(“The current date is”,sDate);

See Also
time

5.2.6 debug
Syntax

void debug(variant msg,...)
Parameters

msg: the messages will be shown on the debug window.
... : more variant variables to be shown.

Description
This function will show the values of the argument in the debug window, if the
mode of the debug is TRUE.

Comments
The arguments are variant on type and numbers. You can add any type or num-
bers of variables to this function, but at least one argument for it.

Example
// The example will show the pChar and f1 in the debug window
char pChar[20]; // declare pChar as char[20]
double f1; // declare f1 as double

f1=2.789;
pChar=”The value of f1 is “;
setdebug(TRUE);
debug(pChar,f1); // It will show “The value of f1 is 2.789”

See Also
setdebug, printf
63 UbiQ Scenario Manager User Manual

5.2.7 eof
Syntax

int eof(int hFile)
Parameters

hFile: Specifies the handle referring to open file
Description

This function returns whether or not the current file position is the end-of-file. If
the handle is invalid, or the file is not open for reading, or the file is locked, the
function returns -1.

Example
int hFile;
hFile=open(“\\flash storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {
// process the file
readln(hFile, data);
while (!eof(hFile)) {
readln(hFile,data);
}
close(hFile); // close the file
}

See Also
open, close, read, write, seek, readln, writeln, filecopy

5.2.8 filecopy
Syntax

int filcopy(char* pSrc,char *pDest) or
int filcopy(string sSrc, string sDest)

Parameters
pSrc: Specifies the source filename array
pDest: Specifies the destination filename array
sSrc: Specifies the source filename string
sDest: Specifies the destination filename string

Description
This function returns the result of copying source file to destination file. If it suc-
cesses, returns TRUE; otherwise returns FALSE.

Example
ilecopy(“\\flash storage\\program.c1”,”\\flash storage\\program.cgi”);

See Also
open, close, read, write, seek, readln, writeln, eof
UbiQ Scenario Manager User Manual 64

C
hapter 5

Functions
R

eference
5.2.9 ftoa
Syntax

int ftoa(double fValue, char* pDest, int nPrecision)
Parameters

FValue: the double value will be converted
pDest: Specifies the Destination array
nPrecision: Specifies the number of digits to be stored after the decimal point.

Description
This function returns the actually length of the converted string.

Example
// The example will convert a double to string and show them
char pDest[20]; // declare pDest as char[20]
dobuble fValue;
int nLen;

setdebug(TRUE);
fValue=23.4567
nLen=ftoa(fValue,pDest,3);
debug(“ftoa(“,fValue,”pDest,3)=”,pDest); It will show “ftoa(23.4567, pDest,
3)=23.457

See Also
itoa, atoi, atof, atoh

5.2.10 GetScenarioReg
Syntax

int GetScenarioReg (int nChanneNol, int nPageNo)
Parameters

nChannelNo: Specifies the index of current scenario items, the value is from 0
to 20.

nPageNo: Specifies a given index of the display page, the value is from 0 to
2.

Description
This function returns the value of the current scenario registry by the given item
and page index.

Example
Int nV;
// Get the current scenario registry for item 1 and page 0
nV=GetScenarioReg(1,0);

See Also
SetScenarioInit
65 UbiQ Scenario Manager User Manual

5.2.11 GetFileFromHttp
Syntax

void GetFileFromHttp(string sHttp, string sDesFile)
Parameters

sHttp: Specifies the homepage file address.
sDestFile: Specifies the destination file on the device side. It should include the

path name.
Description

This function will get the file from the specified homepage address if the homep-
age exist.

Example
string sHttp;
string sDestFile;
sHttp=”http://taiwan.advantech.com.tw/unzipfunc/Unzip/EH-7105_ds.pdf”;
sDestFile=”\\EH7105.pdf”;
GetFileFromHttp(sHttp,sDestFile);

See Also
none

5.2.12 getenv
Syntax

string getenv(char* pEnv) or
string getenv(string sEnv)

Parameters
pEnv: Specifies the Null-ended environment variable.
sEnv: Specifies the environment variable string.

Description
This function returns the string value to the given environment variable.

Comments
This function just is used for writing CGI script on the WebCON kernel.

Example
string sButton;
sButton=getenv(“BUTTON”);
printf(“BUTTON=%s”,sButton);

See Also
printf
UbiQ Scenario Manager User Manual 66

C
hapter 5

Functions
R

eference
5.2.13 HelpWindow
Syntax

void HelpWindow(int nStartX, int nStartY, int nWidth, int nHeight)
Parameters

nStartX: Specifies the beginning x-coordinate of display area.
nStartY: Specifies the beginning y-coordinate of display area.
nWidth: Specifies the width of display area.
nHeight: Specifies the height of display area.

Description
This function set the help window on the specified coordinate when entering
configuration mode.

Example
HelpWindow(10,238,200,17);

See Also
LoadBMP, LoadBMPByValue, ShowText

5.2.14 itoa
Syntax

int itoa(int nValue, char* pDest, int nBase)
Parameters

nValue: the value will be converted
pDest: Specifies the Destination array
nBase: Specifies the base number, it will be 10 or 16.

Description
This function returns the actually length of the converted string.

Example
// The example will convert a integer to string and show them
char pDest[20]; // declare pDest as char[20]
int nI;
int nLen;

setdebug(TRUE);
nI=1024;
nLen=itoa(nI,pDest,10);
debug(“itoa(“,nI,”pDest,10)=”,pDest); // It will show “itoa(1024,pDest,10)=1024”
itoa(nI,pDest,16);
debug(“itoa(“nI,”pDest,16)=”,pDest); // It will show “itoa(1024,pDest,16)=400”

See Also
ftoa, atoi, atof, atoh
67 UbiQ Scenario Manager User Manual

5.2.15 LoadBMP
Syntax

void LoadBMP(int nDIBID, int nStartX, int nStartY, int nWidth, int nHeight, string
sFilename)

Parameters
nDIBID: Specifies the display ID. Its value is from 0 to 32. There are some val-

ues for default function described as follows:
CLOCK_SHOW_ID: show the clock on the screen.
CLOCK_UNSHOW_ID: hide the clock on the screen.
SCREEN_REDRAW_ID: force the display redrawing.

nStartX: Specifies the beginning x-coordinate of display area.
nStartY: Specifies the beginning y-coordinate of display area.
nWidth: Specifies the width of display area.
nHeight: Specifies the height of display area.
sFilename: Specifies the bitmap filename. This file needs to be a bitmap or jpeg

file format. If the filename is beginning with °×\\°±, then the file will
be search from root path. Otherwise, the file will be search from bit-
map folder of current application path.

Description
This function will put the specified bitmap file stretched on the assigned display
area.

Example
// Show the clock on the screen
LoadBMP(CLOCK_SHOW_ID,0,0,240,320,"");
...
// Load the background bitmap from current bitmap folder on the screen
LoadBMP(0,0,0,240,320,"level2\\level2.jpg");
// Load help background to the display area (0,238),(218, 238+18)
LoadBMP(1,0,238,218,18,"level2\\help.jpg");
// Load the icon background to display area (0,256),(218,256+64)
LoadBMP(2,0,256,218,64,"level2\\icon_bg.jpg");

See Also
LoadBMPByValue
UbiQ Scenario Manager User Manual 68

C
hapter 5

Functions
R

eference
5.2.16 LoadBMPByValue
Syntax

void LoadBMPByValue(int nDIBID, int nStartX, int nStartY, int nWidth, int
nHeight, string sFilename, int nValue)

Parameters
nDIBID: Specifies the display ID. Its value is from 0 to 32.
nStartX: Specifies the beginning x-coordinate of display area.
nStartY: Specifies the beginning y-coordinate of display area.
nWidth: Specifies the width of display area.
nHeight: Specifies the height of display area.
sFilename: Specifies the bitmap filename. This file needs to be a bitmap or jpeg

file format. The file will be search from bitmap folder of current appli-
cation path. If the sFilename is equal to "==LIGHT_BAR2", then the
screen will show the default pictures for lighting control.

nValue: Specifies the value associated with sFilename.
Description

This function will put the specified bitmap file by given value stretched on the
assigned display area.

Example
int nV;
nV=GetScenarioReg(0,0);
LoadBMPByValue(3,25,4,18,206,"==LIGHT_BAR2",nV);
...
nV=GetScenarioReg(4,0);
LoadBMPByValue(11,8,260,46,50,"level2\\icons\\curtain",nV);

See Also
LoadBMPByValue, GetScenarioReg, SetScenarioInit

5.2.17 OpenPort
Syntax

void OpenPort(int nPort, int nBaudRate)
Parameters

nPort: Specifies the COM port ID. The UbiQ-230 device RS485 port is set to
COM3:.

nBaudRate: Specifies the baud rate of COM Port. The UbiQ-230 device for
RS485 port is set to 19200 bps.

Description
This function will open a COM port by specified baud rate.

Example
g_nPortID=3;
OpenPort(g_nPortID,19200);

See Also
sendComData
69 UbiQ Scenario Manager User Manual

5.2.18 open
Syntax

int open(char* pFilename,int open_type) or
int open(string sFilename,int open_type)

Parameters
pFilename: Specifies the Null-ended character array filename. A array that is

the path to the desired file. The path must be absolute.
sFilename: Specifies the filename string. A string that is the path to the desired

file. The path must be absolute.
Description

This function returns a file handle for the opened file. A return value of 0 indi-
cates an error.

Comments
The open function opens the file specified by filename and prepares the file for
reading or writing, as specified by open_flag:

Example
int hFile;
hFile=open(“\\flash storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {

close(hFile);
}

See Also
read, write, close, seek, readln, writeln, filecopy, eof

open_flag description
FILE_READ Opens the file for reading only
FILE_RDWR Opens the file for reading and writing
FILE_CREATE_NEW Create a new file. If the file exists already, it is truncated to 0

length.
FILE_CREATE_RW Create a new file. If the file being created already exists, it is not

truncated to 0 length. Thus the file is guaranteed to open, either as
a newly created file or as an existing file. This might be useful, for
example, when opening a settings file that may or may not exist
already.
UbiQ Scenario Manager User Manual 70

C
hapter 5

Functions
R

eference
5.2.19 PlaySound
Syntax

void PlaySound(string sWaveFile)
Parameters

sWaveFile : Specifies the wave filename. This file needs to be a wave format. If
the filename is beginning with “\\”, then the file will be search from
root path. Otherwise, the file will be search from current application
path.

Description
This function will play a sound with specified wave file.

Example
PlaySound(“\\windows\\default.wav”);

See Also
none

5.2.20 printf
Syntax

void printf(char *pFormat,...) or
void printf(string sFormat,...)

Parameters
pFormat : Specifies the Null-end character array format to show on the debug

window or the client of webpages
sFormat: Specifies thestring format to show on the debug window or the client

of webpages
.. : more variant variables to be added into the format string

Description
The function formats and prints a series of characters and values to the debug
window or the client of webpages. If arguments follow the format string, the for-
mat string must contain specifications that determine the output format for the
arguments.

Comments
Format specifications always begin with a percent sign (%) and are read left to
right. When printf encounters the first format specification (if any), it converts the
value of the first argument after format and outputs it accordingly. The second
format specification causes the second argument to be converted and output,
and so on. If there are more arguments than there are format specifications, the
extra arguments are ignored. The results are undefined if there are not enough
arguments for all the format specifications.
A format specification, which consists of optional and required fields, has the
following form:

%[flags] [width] [.precision] type

Each field of the format specification is a single character or a number signifying
a particular format option. The simplest format specification contains only the
percent sign and a type character (for example, %s). If a percent sign is fol-
lowed by a character that has no meaning as a format field, the character is
copied to stdout. For example, to print a percent-sign character, use %%.
71 UbiQ Scenario Manager User Manual

The optional fields, which appear before the type character, control other
aspects of the formatting, as follows:
type
Required character that determines whether the associated argument is inter-
preted as a character, a string, or a number.

flags
Optional character or characters that control justification of output and printing
of signs, blanks, decimal points, and octal and hexadecimal prefixes. More than
one flag can appear in a format specification.

Character Type Output Format
c or C int or char Specifies a single-byte character.
d int Signed decimal integer.
i int Signed decimal integer.
o . int Unsigned octal integer
u int Unsigned decimal integer.
x int Unsigned hexadecimal integer, using “abcdef.”
X int Unsigned hexadecimal integer, using “ABCDEF.”
e double Signed value having the form [-]d.dddd e

[sign]ddd where d is a single decimal digit, dddd is
one or more decimal digits, ddd is exactly three
decimal digits, and sign is + or -.

E double Identical to the e format except that E rather than e
introduces the exponent.

f double Signed value having the form [-]dddd.dddd,
where dddd is one or more decimal digits. The
number of digits before the decimal point depends
on the magnitude of the number, and the number
of digits after the decimal point depends on the
requested precision.

g double Signed value printed in f or e format, whichever is
more compact for the given value and precision.
The e format is used only when the exponent of
the value is less than -4 or greater than or equal to
the precision argument. Trailing zeros are trun-
cated, and the decimal point appears only if one or
more digits follow it.

G double Identical to the g format, except that E, rather than
e, introduces the exponent (where appropriate).

s or S String Specifies a single-byte - character string. Charac-
ters are printed up to the first null character or until
the precision value is reached.

Flag Meaning Default
- Left align the result within the given field width. Right align.
+ Prefix the output value with a sign (+ or -) if the

output value is of a signed type
Sign appears only
for negative
signed values (-).

0 If width is prefixed with 0, zeros are added until the
minimum width is reached. If 0 and ®C appear,
the 0 is ignored. If 0 is specified with an integer
format (i, u, x, X, o, d) the 0 is ignored.

No padding.
UbiQ Scenario Manager User Manual 72

C
hapter 5

Functions
R

eference
width
Optional number that specifies the minimum number of characters output.
The second optional field of the format specification is the width specification.
The width argument is a nonnegative decimal integer controlling the minimum
number of characters printed. If the number of characters in the output value is
less than the specified width, blanks are added to the left or the right of the val-
ues -- depending on whether the - flag (for left alignment) is specified -- until the
minimum width is reached. If width is prefixed with 0, zeros are added until the
minimum width is reached (not useful for left-aligned numbers).
The width specification never causes a value to be truncated. If the number of
characters in the output value is greater than the specified width, or if width is
not given, all characters of the value are printed
precision
Optional number that specifies the maximum number of characters printed for
all or part of the output field, or the minimum number of digits printed for integer
values.
The third optional field of the format specification is the precision specification. It
specifies a nonnegative decimal integer, preceded by a period (.), which speci-
fies the number of characters to be printed, the number of decimal places, or
the number of significant digits. Unlike the width specification, the precision
specification can cause either truncation of the output value or rounding of a
floating-point value. If precision is specified as 0 and the value to be converted
is 0, the result is no characters output, as shown below:

printf("%.0d", 0); /* No characters output */

If the precision specification is an asterisk (*), an int argument from the argu-
ment list supplies the value. The precision argument must precede the value
being formatted in the argument list.

blank (' ') Prefix the output value with a blank if the output
value is signed and positive; the blank is ignored if
both the blank and + flags appear.

No blank
appears.

 # When used with the o, x, or X format, the # flag
prefixes any nonzero output value with 0, 0x, or
0X, respectively

No blank
appears.

When used with the e, E, or f format, the # flag
forces the output value to contain a decimal point
in all cases.

Decimal point
appears only if
digits follow it.

When used with the g or G format, the # flag
forces the output value to contain a decimal point
in all cases and prevents the truncation of trailing
zeros.
Ignored when used with c, d, i, u, or s.

Decimal point
appears only if
digits follow it.
Trailing zeros are
truncated.

Type Meaning Default
c, C The precision has no effect. Character is printed.
d, i, u, o, x, X The precision specifies the mini-

mum number of digits to be
printed. If the number of digits in
the argument is less than preci-
sion, the output value is padded
on the left with zeros. The value
is not truncated when the number
of digits exceeds precision.

Default precision is 1.
73 UbiQ Scenario Manager User Manual

Example
// The example will show the messages in the debug window
char pChar[20]; // declare pChar as char[20]
double f1; // declare f1 as double
int nI;
string aStr;
char pBuf[30];

f1=2.789;
nI=120;
pBuf=”Test Printf”;
aStr=”Test printf 2”;
setdebug(TRUE);
printf(“The f1=%f, nI=%d, pBuf=%s, aStr=%s”,f1,nI,pBuf,aStr);

See Also
sprintf, debug, setdebug, getenv

e, E The precision specifies the num-
ber of digits to be printed after the
decimal point. The last printed
digit is rounded.

Default precision is 6; if precision is 0
or the period (.) appears without a
number following it, no decimal point
is printed.

f The precision value specifies the
number of digits after the decimal
point. If a decimal point appears,
at least one digit appears before
it. The value is rounded to the
appropriate number of digits.

Default precision is 6; if precision is 0,
or if the period (.) appears without a
number following it, no decimal point
is printed.

g, G. The precision specifies the maxi-
mum number of significant digits
printed.

Six significant digits are printed, with
any trailing zeros truncated

s, S The precision specifies the maxi-
mum number of characters to be
printed. Characters in excess of
precision are not printed.

Characters are printed until a null
character is encountered.
UbiQ Scenario Manager User Manual 74

C
hapter 5

Functions
R

eference
5.2.21 read
Syntax

int read(int hFile,char *buf, int nCount)
Parameters

hFile: Specifies the handle referring to open file
buf: Specifies the storage location for data
nCount: Specifies the maximum number of bytes

Description
This function returns the number of bytes read, which may be less than nCount
if there are fewer than count bytes left in the file. If the function tries to read at
end of file, it returns 0. If the handle is invalid, or the file is not open for reading,
or the file is locked, the function returns -1.

Example
int hFile;
int nLen;
char data[512];
hFile=open(“\\flash storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {
// process the file
nLen=read(hFile, data, 512);
while (nLen!=512) {
nLen=read(hFile,data,512);
}
close(hFile); // close the file
}

See Also
open, close, write, seek, readln, writeln, filecopy, eof
75 UbiQ Scenario Manager User Manual

5.2.22 readln
Syntax

int readln(int hFile,char *buf)
Parameters

hFile: Specifies the handle referring to open file
buf: Specifies the storage location for data

Description
This function returns the number of bytes read. This function reads a line of text
and then skips to the next line of the file. The file must be a text file, in which
case each carriage return®Clinefeed (CR-LF) pair or single linefeed character
is replaced with a Null-ended character. If the function tries to read at end of file,
it returns 0. If the handle is invalid, or the file is not open for reading, or the file is
locked, the function returns -1.

Example
int hFile;
int nLen;
char data[512];
hFile=open(“\\flash storage\\template.txt”, FILE_READ);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {
// process the file
readln(hFile, data);
while (!eof(hFile)) {
readln(hFile,data);
}
close(hFile); // close the file
}

See Also
open, close, read, write, seek, writeln, filecopy, eof
UbiQ Scenario Manager User Manual 76

C
hapter 5

Functions
R

eference
5.2.23 seek
Syntax

int seek(int hFile,int nFrom, int nOffset)
Parameters

hFile: Specifies the handle referring to open file
nFrom: Specifies the Pointer movement mode.
nOffset: Specifies the number of bytes to move the pointer

Description
This function returns the new byte offset from the beginning of the file. A return
value of -1 indicates an error.

Comments
Pointer movement mode must be one of the following values:

Example
int hFile;
int nLen;
char data[512];
hFile=open(“\\flash storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);
}
else {
// process the file
seek(SEEK_END,0);
data=”This is a test file.”;
nLen=write(hFile, data, strlen(datta));
close(hFile); // close the file
}

See Also
open, close, read, write, readln, writeln, filecopy, eof

SEEK_BEGIN Move the file pointer nOffset bytes forward from the beginning of
the file.

SEEK_END Move the file pointer nOffset bytes from the end of the file. Note
that nOffset must be negative to seek into the existing file; positive
values will seek past the end of the file

SEEK_CURRENT Move the file pointer lOff bytes from the current position in the file.
77 UbiQ Scenario Manager User Manual

5.2.24 sendComData
Syntax

int sendComData (int nPort, char *OutBuf, int nOutLen, char *ReadBuf, int
nReadLen, int nTimeout)

Parameters
nPort: Specifies the COM port
OutBuf: Specifies output data buffer address
nOutLen: Specifies the length of sending data
ReadBuf: Specifies receiving data buffer address
nReadLen: Specifies the length of receiving data
nTimeout: Specifies the timeout of receiving data

Description
This function sends the data to the COM nPort and waits until return data is
received or timeout. The return value is the actual length of receiving data.

Example
char pOut[20];
char pRead[50];
char pTemp[5];
int nRet;
int i;

pOut="#011001\r";
setdebug(TRUE);
debug("Digital Out in", 0);
nRet = sendComData(2,pOut,8,pRead,2,1000); //send data to COM2
if (nRet==2) {
debug("Data is correct!",nRet);
return (1);
}
return (0);

See Also
OpenPort
UbiQ Scenario Manager User Manual 78

C
hapter 5

Functions
R

eference
5.2.25 setdebug
Syntax

void setdebug(int bEnable)
Parameters

bEnable : Enable or disable the show message of the debug window.
Description

This function will enable or disable the show message of the debug window. If
set to TRUE, the debug window is enabled. If set to FALSE, the debug window
is disabled.

Example
// The example will show the pChar and f1 in the debug window
char pChar[20]; // declare pChar as char[20]
double f1; // declare f1 as double

f1=2.789;
pChar=”The value of f1 is “;
setdebug(TRUE);
debug(pChar,f1); // It will show “The value of f1 is 2.789”
setdebug(FALSE);
debug(pChar,f1); // It does not show anything

See Also
debug, printf

5.2.26 SetupTime
Syntax

void SetupTime()
Parameters

None
Description

This function will display the clock on the screen and provide user interface to
setup time and clock.

Example
SetupTime();

See Also
HelpWindow, LoadBMP, LoadBMPByValue
79 UbiQ Scenario Manager User Manual

5.2.27 ShowText
Syntax

void ShowText(int nType, int nX, int nY, int nStyle, string sText)
Parameters

nType: Specifies the type of text. The value 1 is for the notification text.
nX: Specifies the beginning x-coordinate of text.
nY: Specifies the beginning y-coordinate of text.
nStyle: Specifies the style of display text. Please set to 0.
sText: pecifies the display string of text.

Description
This function set the help window on the specified coordinate when entering
configuration mode.

Example
string sMsg;
sMsg=”Please check the input pin is OK or not”;
ShowText(1,0,0,0,sMsg);

See Also
HelpWindow, LoadBMP, LoadBMPByValue

5.2.28 Sleep
Syntax

void Sleep(int nMilliseconds)
Parameters

nMilliseconds :Specifies the time, in milliseconds, for which to suspend execu-
tion. A value of zero causes the thread to relinquish the remainder of its time
slice to any other thread of equal priority that is ready to run. If there are no
other threads of equal priority ready to run, the function returns immediately,
and the thread continues execution.

Description
This function suspends the execution of the current thread for a specified inter-
val.

Example
int nI;

setdebug(TRUE);
for (nI=0;nI<500;nI=nI+1) {
Sleep(1000);
debug(“Sleep “,nI,” mini-second”);
}

See Also
UbiQ Scenario Manager User Manual 80

C
hapter 5

Functions
R

eference
5.2.29 sprintf
Syntax

void sprintf(char* pBuf, char* pFormat,... or
void sprintf(char* pBuf, string sFormat,...)

Parameters
pBuf: Specifies the destination array.
pFormat : Specifies the Null-end character array format
sFormat: Specifies the string format
...: Specifies more variant variables to be added into the format string

Description
This function returns the number of bytes stored in buffer, not counting the ter-
minating null character.

Comments
The sprintf function formats and stores a series of characters and values in
buffer. Each argument (if any) is converted and output according to the corre-
sponding format specification in format. The format consists of ordinary charac-
ters and has the same form and function as the format argument for printf. A
null character is appended after the last character written. If copying occurs
between strings that overlap, the behavior is undefined.

Example
// The example will show the pChar and f1 in the debug window
char pChar[20]; // declare pChar as char[20]
double f1; // declare f1 as double
int nI;
string aStr;
char pData[15];
char pBuf[50];

f1=2.789;
nI=120;
pData=”Test Printf”;
aStr=”Test printf 2”;
setdebug(TRUE);
sprintf(pBuf,”The f1=%f, nI=%d, pBuf=%s, aStr=%s”,f1,nI,pBuf,aStr);

See Also
printf, debug , setdebug
81 UbiQ Scenario Manager User Manual

5.2.30 strcpy
Syntax

int strcpy(char* pDest, char* pSour, int nStart, int nLen) or
int strcpy(char* pDest, string sSour, int nStart, int nLen)

Parameters
pDest: Specifies the Destination array
pSour: Specifies the NULL ended character array.
sSour: Specified the source string
nStart: the begin position to be copied, is the 0-based index
nLen: the length from source string to destination array

Description
This function return the actually length from source string to destination array.

Example
// The example will show the pChar and f1 in the debug window
char pDest[20]; // declare pDest as char[20]
char pSour[20]; // declare pSour as char[20]
string aStr; // declare aStr as string

aStr=”0123456789”;
pSour=”abcdefghijk”;
setdebug(TRUE);
strcpy(pDest,pSour,5,4);
debug(“strcpy(pDest,”,pSour,”,5,4)=”,pDest); // It will show “strcpy(pDest,abc-
defghijk,5,4)=fghi
strcpy(pDest,aStr,3,5);
debug(“strcpy(pDest,”,pSour,”,3,5)=”,pDest); // It will show
“(0123456789,3,5)=34567

See Also
strlen
UbiQ Scenario Manager User Manual 82

C
hapter 5

Functions
R

eference
5.2.31 strlen
Syntax

int strlen(char* pChar) or
int strlen(string aStr)

Parameters
pChar: Specifies a Null-ended character array
aStr: Specifies a string variable

Description
This function return the character number of NULL ended character array or a
string variable.

Example
// The example will show the pChar and f1 in the debug window
char pChar[20]; // declare pChar as char[20]
string aStr; // declare aStr as string

aStr=”String”;
pChar=”pChar”;
setdebug(TRUE);
debug(“strlen(“,aStr,”)=”,strlen(aStr)); // It will show “strlen(String)=6”
debug(“strlen(“,pChar,”)=”,strlen(pChar)); // It will show “strlen(pChar)=5”

See Also
strcpy

5.2.32 time
Syntax

string time()
Parameters

none
Description

This function returns the current date, its format is fixed as “hh:mm:ss”.
Example

string sTime;
setdebug(TRUE);
sDate=time();
debug(“The current time is”,sTime);

See Also
date
83 UbiQ Scenario Manager User Manual

5.2.33 write
Syntax

int write(int hFile,char *buf, int nCount)
Parameters

hFile: Specifies the handle referring to open file
buf: Specifies the storage location for data
nCount: Specifies the maximum number of bytes

Description
This function returns the number of bytes actually written. If the actual space
remaining on the disk is less than the size of the buffer the function is trying to
write to the disk, write fails and does not flush any of the buffer’s contents to the
disk. A return value of -1 indicates an error.

Example
int hFile;
int nLen;
char data[512];
hFile=open(“\\flash storage\\template.txt”, FILE_CREATE_RW);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);
}
else {
// process the file
seek(hFile,SEEK_END,0);
data=”This is a test file”;
nLen=write(hFile, data, strlen(datta));
 close(hFile); // close the file
}

See Also
open, close, read, seek, readln, writeln, filecopy, eof
UbiQ Scenario Manager User Manual 84

C
hapter 5

Functions
R

eference
5.2.34 writeln
Syntax

int writeln(int hFile,char *buf)
Parameters

hFile: Specifies the handle referring to open file
buf : Specifies the storage location for data

Description
This function returns the number of bytes writen. This function writes the buf
data plus an end-of-line marker (carriage-return/linefeed) to the file. If the han-
dle is invalid, or the file is not open for writing, or the file is locked, the function
returns -1.

Example
int hFile;
int nLen;
char data[512];
hFile=open(“\\flash storage\\template.txt”, FILE_READ);
setdebug(TRUE);
if (hFile==0) {
debug(“Open file failed!”);

}
else {
// process the file
data = “This is a test”;
writeln(hFile, data);
close(hFile); // close the file
 }

See Also
open, close, read, write, seek, readln, filecopy, eof
85 UbiQ Scenario Manager User Manual

www.advantech.com
Please verify specifications before quoting. This guide is intended for reference
purposes only.
All product specifications are subject to change without notice.
No part of this publication may be reproduced in any form or by any means,
electronic, photocopying, recording or otherwise, without prior written permis-
sion of the publisher.
All brand and product names are trademarks or registered trademarks of their
respective companies.
© Advantech Co., Ltd. 2007

	UbiQ
	Scenario Manager
	1 Introduction
	1.1 Overviews
	1.1.1 Contents

	1.2 System Architecture
	1.2.1 Module Description
	1.2.1.1 Compact Embedded Web Server
	1.2.1.2 C Script Engine
	1.2.1.3 UbiQ Scenario Manager Software Utility

	1.3 Installation
	1.3.1 PC System Requirements
	1.3.2 Installing UbiQ Scenario Manager Utility
	Figure 1.1 UbiQ Scenario Manager Installation Welcome Screen
	Figure 1.2 Choose Destination Location Screen
	Figure 1.3 Select Program Folder Screen
	Figure 1.4 Setup Complete Screen

	1.3.3 Start Menu Shortcuts

	1.4 How Does UbiQ Work?

	2 Getting Started
	2.1 Quick Start to UbiQ-230 platform
	2.2 Seek Ubiq-230 Devices
	2.3 Information of Connected UbiQ
	2.4 Control of Connected UbiQ
	2.5 Explorer of Connected UbiQ
	2.6 Scenarios of Connected UbiQ
	2.7 Lighting of Connected UbiQ
	2.8 Controller Manager
	2.9 Function Manager Page

	3 Tutorials
	3.1 Tutorials
	3.2 Define your user interface on UbiQ-230
	3.3 Web-enabled UI Access

	4 Basic of Smart-C Script Language
	4.1 Elements of C
	4.1.1 Tokens
	4.1.2 Comments
	4.1.3 Keywords
	4.1.4 Constants
	4.1.5 Hex-decimal Integer Constant
	4.1.6 String literals
	4.1.7 Punctuation and special characters

	4.2 Program Structure
	4.2.1 The main function and program execution
	4.2.2 Name spaces
	4.2.2.1 Functions of controllers
	4.2.2.2 Ordinary identifiers

	4.3 Declarations and Types
	4.3.1 Overview of declarations
	4.3.2 Type specifiers

	4.4 Expressions and Assignments
	4.4.1 Operators
	4.4.2 Operator precedence

	5 Functions Reference
	5.1 Summary Tables
	5.2 Support Functions
	5.2.1 atof
	5.2.2 atoh
	5.2.3 atoi
	5.2.4 close
	5.2.5 date
	5.2.6 debug
	5.2.7 eof
	5.2.8 filecopy
	5.2.9 ftoa
	5.2.10 GetScenarioReg
	5.2.11 GetFileFromHttp
	5.2.12 getenv
	5.2.13 HelpWindow
	5.2.14 itoa
	5.2.15 LoadBMP
	5.2.16 LoadBMPByValue
	5.2.17 OpenPort
	5.2.18 open
	5.2.19 PlaySound
	5.2.20 printf
	5.2.21 read
	5.2.22 readln
	5.2.23 seek
	5.2.24 sendComData
	5.2.25 setdebug
	5.2.26 SetupTime
	5.2.27 ShowText
	5.2.28 Sleep
	5.2.29 sprintf
	5.2.30 strcpy
	5.2.31 strlen
	5.2.32 time
	5.2.33 write
	5.2.34 writeln

