

 How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

APPLICATION NOTE

How to Implement AMI Modules From

SOM-A200 series CSB AMI-120 Interface

Released Version:V1.14

Released Date: May,09, 2004

Advantech Co., Ltd
Risc Embedded Computing Division
http://www.advantech.com/risc

Your ePlatform Partner

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 2

ABSTRACT
This application note explains how to design AMI (ARM Module Interface) modules from

SOM-A200 series Customer Solution Board(CSB) AMI-120 interface. The content includes

AMI-120 connector information, pin configuration and description, memory map and how to

add on user driver with Advantech SOM-A255x series BSP.

Copyright
This document is copyrighted, © 2003. All rights are reserved. The original manufacturer

reserves the right to make improvements to the products described in this document at any

time without notice.

No part of this document may be reproduced, copied, translated or transmitted in any form or

by any means without the prior written permission of the original manufacturer. Information

provided in this document is intended to be accurate and reliable. However, the original

manufacturer assumes no responsibility for its use, nor for any infringements upon the rights of

third parties that may result from such use.

For more information on this and other Advantech products please visit our website at:
http://www.advantech.com
http://www.advantech.com/risc
For technical support and service for please visit our support website at:
http://eservice.advantech.com.tw/eservice/
Or directly mail to Advantech RISC platform application engineer
AE.RISC@advantech.com.tw

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 3

Revision History

Version Date Reason
V1.13 2004.04.26 AMI C4 pin should be SYS_VCC3P3

, not GND.
V1.14 2004.05.09 AMI C10 pin is changed from N.C. to

nPXA_CS2.

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 4

I. Introduction

AMI-120 is designed for expanding features for demanding embedded applications. It is a

Advantech self-defined expansion bus to customize or configure AMI modules for any specific

applications. Customers can design their self-defined modules or extra functions except using

Advantech AMI modules on Advantech RISC platform. This application note explains how to

implement AMI modules on SOM-A200 series CSB (Customer Solution Board) through

AMI-120 interface. The mechanical of AMI connector is the same as PC/104 Plus shown as

Figure 1 and is a 4*30-pin connector. This type of connector provides a strong, dust free

(virtually gas tight) connection for higher reliability.

Figure 1. AMI-120 Connector

II. Mechanical

Advantech SOM-A200 series CSB provides an AMI-120 interface for expansion function. The

AMI-120 connector P/N of SOM-A200 series CSB is EPT 264-40303-02 as Figure 2. The

matting connector of AMI-120 connector is EPT 264-60303-12 as Figure 2 and its shroud is

EPT 264-17302 as Figure 4. The other solution is using PC/104 plus straight headers as EPT

272-30000-31 as Figure 5.

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 5

Figure 2. The dimension of AMI-120 connector and drawing

Figure 3. The pin drawing of AMI-120 connector

Figure 4. The shroud of AMI-120 matting connector drawing (EPT 264-17302)

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 6

Figure 5. The PC/104 plus straight header drawing (EPT 272-30000-31)

III. Pin Configuration and Description

a. Pin Configuration
The following table describes all pins of the AMI-120 connector listed in numeric order.

Table 1. Pin Configurator of AMI-120 connector

Pin Signals Pin Signals Pin Signals Pin Signals
A1 SDRAM_CLK1 B1 GND C1 SDRAM_CKE1 D1 PWR_EN
A2 GND B2 3.6864MHz C2 SYS_VCC3P3* D2 SYS_VCC3P3*
A3 PXA_GPIO27 B3 Reserved C3 PXA_GPIO3 D3 PXA_GPIO9
A4 Reserved B4 PXA_GPIO7 C4 SYS_VCC3P3* D4 SYS_VCC3P3*
A5 PXA_A0 B5 PXA_A1 C5 PXA_A15 D5 PXA_A14
A6 PXA_A2 B6 PXA_A3 C6 PXA_A13 D6 PXA_A12
A7 PXA_A4 B7 PXA_A5 C7 PXA_A11 D7 PXA_A10
A8 PXA_A6 B8 PXA_A7 C8 PXA_A9 D8 PXA_A8
A9 PXA_A16 B9 PXA_A17 C9 PXA_A24 D9 PXA_A25
A10 PXA_A18 B10 PXA_A19 C10 nPXA_CS2*** D10 nPXA_OE***
A11 PXA_A20 B11 PXA_A21 C11 nPXA_WE*** D11 GND
A12 PXA_A22 B12 PXA_A23 C12 PXA_RD_nWR*** D12 RDY
A13 SYS_VCC3P3* B13 nPXA_CS3*** C13 nPXA_CS4*** D13 nPXA_CS5***
A14 PXA_D0 B14 PXA_D1 C14 PXA_D15 D14 PXA_D14
A15 PXA_D2 B15 PXA_D3 C15 PXA_D13 D15 PXA_D12
A16 PXA_D4 B16 PXA_D5 C16 PXA_D11 D16 PXA_D10
A17 PXA_D6 B17 PXA_D7 C17 PXA_D9 D17 PXA_D8
A18 PXA_D16 B18 PXA_D17 C18 PXA_D31 D18 PXA_D30
A19 PXA_D18 B19 PXA_D19 C19 PXA_D29 D19 PXA_D28
A20 PXA_D20 B20 PXA_D21 C20 PXA_D27 D20 PXA_D26
A21 PXA_D22 B21 PXA_D23 C21 PXA_D25 D21 PXA_D24
A22 nSDRAM_RAS*** B22 nSDRAM_CAS*** C22 nPXA_RESET*** D22 GND

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 7

A23 nSDRAM_CS0*** B23 nSDRAM_CS1*** C23 nRESET_OUT*** D23 GND
A24 DQM0 B24 DQM1 C24 nBATT_FALT*** D24 SYS_VCC3P3*
A25 DQM2 B25 DQM3 C25 nVDD_FALT*** D25 SYS_VCC3P3*
A26 Reserved B26 Reserved C26 Reserved D26 Reserved
A27 Reserved B27 Reserved C27 SYS_VCC** D27 SYS_VCC**
A28 Reserved B28 Reserved C28 Reserved D28 PXA_GPIO20
A29 Reserved B29 Reserved C29 PXA_GPIO22 D29 PXA_GPIO19
A30 MBREQ B30 MBGNT C30 GND D30 SDRAM_CLK2
*SYS_VCC3P3 is +3.3V, no matter system is in run mode or sleep mode.

**SYS_VCC is +5V and will be removed while system is in sleep mode.

***n-indicated active low signal

b. Pin Description
The following table describes the signals of AMI-120 connector.

Signal Attribute: n ─ Active low signal

 IC ─ Input, CMOS threshold

 ICOCZ ─ Input, CMOS threshold, output CMOS level, tristatable

 OCZ ─ Output, CMOS levels, tristatable

Table 2. Pin Description of AMI-120 connector

Name Pin(s) No. Attribute Description

PXA_A 0:25 A5-A12, B5-B12, C5-C9,

D5-D9

ICOCZ

26-bit system address bus. Bits PXA_A 10:24, as inputs,

are used for DMA access to SDRAM.

PXA_D 0:31 A14-A21, B14-B21,

C14-C21, D14-D21

ICOCZ

32-bit system data bus.

DQM 0:3 A24, B24, A25, B25 ICOCZ Byte Data Output Mask Enable for SDRAM and

SRAM-type write transfer. Bits DQM 0:3, as inputs, are

used for DMA access to SDRAM.

nPXA_OE D10 ICOCZ Memory Output Enable.

nPXA_WE C11 ICOCZ Memory Write Enable.

PXA_RD_nWR C12 ICOCZ Read/Write direction control for memory.

RDY D12 IC Static data ready signal for nPXA_CS 3:5. This signal

should be connected to the data ready output pins of

variable latency I/O devices that require variable data

latencies.

nSDRAM_CAS B22 ICOCZ SDRAM Column Address Strobe. This bit is as input is

used for DMA access to SDRAM

nSDRAM_RAS A22 ICOCZ SDRAM Row Address Strobe. This bit is as input is used

for DMA access to SDRAM

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 8

SDRAM_CLK1 A1 ICOCZ SDRAM Clock 1. PCM-7220 onboard SDRAM is using

this pin for memory clock. This bit is as input is used for

DMA access to SDRAM. The frequency of SDRAM clock

is 99.5MHz.

SDRAM_CLK2 D30 ICOCZ SDRAM Clock 2. PCM-7220 expansion memory module

SDRAM is using this pin for memory clock. This bit is as

input is used for DMA access to SDRAM. The frequency

of SDRAM clock is 50MHz

SDRAM_CKE1 C1 OCZ SDRAM Clock Enable 1. PCM-7220 onboard SDRAM is

using this pin for memory clock enable.

nSDRAM_CS0 A23 ICOCZ SDRAM Chip Select 0. PCM-7220 onboard SDRAM is

using this pin for memory chip select. This bit is as input is

used for DMA access to SDRAM.

nSDRAM_CS1 B23 ICOCZ SDRAM Chip Select 1. PCM-7220 expansion memory

module SDRAM is using this pin for memory chip select.

This bit is as input is used for DMA access to SDRAM.

nPXA_RESET C22 IC Hardware Reset. This pin is an active low signal and a

level-sensitive input used to start the processor from

address 0. This pin is connected directly from Intel

PXA255 processor J13 pin.

nRESET_OUT C23 OCZ Reset Out. This signal is asserted when nRESET is asserted

and deasserts when the processor has completed resetting.

nRESET_OUT is also asserted for "soft" reset events (sleep

and watchdog). This pin is connected directly from Intel

PXA255 process K11 pin.

PWR_EN D1 OCZ Power Enable. PWR_EN enables the external VDD

power supply and is an active high signal. While the

system is going into sleep mode, this signal will be

deasserted. At the same time, the VDD power supply

should be removed.

nBATT_FALT C24 IC Battery Fault. System will enter sleep mode or force an

imprecise data exception while this pin is asserted. Intel

PXA255 process will not recognize a walk-up event while

this signal is asserted. Minimum assertion time for

nBATT_FALT is 1 ms.

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 9

nVDD_FALT C25 IC VDD Fault. System will enter sleep mode or force an

imprecise data exception while this pin is asserted.

nVDD_FALT is ignored after a walk-up event until the

power supply timer completes (approximately 10 ms).

Minimum assertion time for nVDD_FALT is 1 ms.

3.6864MHz B2 OCZ 3.6864MHz clock output from Intel PXA255 processor.

MBREQ A30 IC Memory Controller Alternate Bus Master Request. Allows

an external device to request the system bus from the

Memory Controller.

MBGNT B30 OCZ Memory Controller Grant. Notifies an external device that

it has been granted the system bus.

PXA_GPIO3 C3 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor K14 pin. Reserved for external

display controller interrupt.

PXA_GPIO7 B4 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor G15 pin.

PXA_GPIO9 D3 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor F12 pin. Reserved for Advantech

or Intel companion chip interrupt.

PXA_GPIO19 D29 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor N14 pin. This pin is pull-down by

100k ohm resistor.

PXA_GPIO20 D28 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor N12 pin. This pin is pull-down by

100K ohm resistor.

PXA_GPIO22 C29 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor M12 pin.

PXA_GPIO27 A3 ICOCZ General Purpose I/O. This pin is connected directly from

Intel PXA255 processor B9 pin. Reserved for external

USB host controller interrupt.

nPXA_CS2 C10 OCZ Static Chip Select 2. Reserved for Advantech or customer

future IC chip select.

nPXA_CS3 B13 OCZ Static Chip Select 3. Advantech programs a memory

block for users self-defined modules I/O control. Refer to

section V. AMI bus memory map.

nPXA_CS4 C13 OCZ Static Chip Select 4. Reserved for Advantech or Intel

companion IC chip select.

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 10

nPXA_CS5 D13 OCZ Static Chip Select 5. Reserved for display controller chip

select.

GND B1, A2, D11, D22, D23,

C30

Grounded Must be connected to PCB ground

SYS_VCC3P3 C2, C4,D2, D4, A13,

D24, D25

Power Supply +3.3V power. No matter the system is in normal or

sleep mode, these power sources still provide +3.3V

power.

SYS_VCC C27, D27 Power Supply +5V power. These power sources will provide +5V

power but will be removed while the system is in sleep

mode.

NC C10 Disconnected This pin is disconnected.

Reserved B3, A4, A26-A29,

B26-B29, C26, C28,

D26

Reserved These pins are reserved or have been used for the

PCM-7220 SBC already. Note: Don’t connect these pins

and keep these pins disconnect.

IV. AMI-120 bus Timing

Refer to Table 6-21 on Intel PXA255 processor manual page 6-45 Asynchronous Static

Memory Control Registers (MSCx) shown as Table 3. We can configure these registers to set

the chip select access timing. Bit 0-15 of MCS1 register is about chip select 2 setting and

AMI-120 doesn’t provide chip select 2 for users expanding. Here we only discuss the values of

MCS1 about the chip select 3. Advantech sets “3ff1” as the values of MCS1 register high word

(bit 16:31).

Table 3. MSC1 Bit Definitions

Bit 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

 RBUFF3 RRR3 RDN3 RDF3 RBW3 RT3

 0 011 1111 1111 0 001

Bits Access Name Description

31 R/W RBUFF3 Return Data Buffer vs. Streaming behavior.

When slower memory or I/O devices are used in the system (e.g. VLIO, slow

SRAM/ROM), this bit must be reset to allow the system to not have to remain idle

while all data is read from the device. By resetting this bit, the system is allowed

to process other information. When set, the internal bus may halt while all data is

returned from the device. The value of the RBUFF bit does not affect the behavior

of the external memory bus. Once a transaction begins on the memory bus, it

must be completed before another transaction starts. When Synchronous Static

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 11

memory devices have been enabled for a given bank, this value will default to

Streaming behavior (assuming a faster device). The register bit will still read as 0

(Return Data Buffer) unless it has specifically been programmed to a 1. This

cannot be overridden.

0 – Slower device (Return Data Buffer)

1 – Faster device (Streaming behavior)

30:28 R/W RRR3<2:0> ROM/SRAM recovery time.

Chip select deasserted after a read/write to next chip select (including the same

static memory bank) or nSDCS asserted is equal to (RRRx * 2) memclks.

This field must be programmed with the maximum of tOFF (divided by 2), write

pulse high time (Flash/SRAM), and write recovery before read (Flash).

27:24 R/W RDN3<3:0> ROM delay next access

Address to data valid for subsequent access to burst ROM or Flash is equal

to (RDNx + 1) memclks.

nWE assertion for write accesses to SRAM is equal to (RDFx + 1) memclks.

The nOE (nPWE) deassert time between each beat of read/write for Variable

Latency I/O is equal to (RDNx + 2) memclks. For variable latency I/O, this number

must be greater than or equal to 2.

23:20 R/W RDF3<3:0> ROM delay first access.

RDF programmed RDF value interpreted

0-11 0-11

12 13

13 15

14 18

15 23

Address to data valid for the first read access from all devices except VLIO is

equal to (RDFx + 2) memclks.

Address to data valid for subsequent read accesses to non-burst devices is equal

to (RDFx + 1) memclks.

nWE assertion for write accesses (which are non-burst) to all Flash is equal to

(RDFx + 1) memclks.

nOE (nPWE) assert time for each beat of read (write) is equal to (RDFx + 1)

memclks for Variable Latency I/O (nCS[5:0]). For variable latency I/O, RDFx must

be greater than or equal to 3.

19 R/W RBW3 ROM bus width

0 – 32 bits

1 – 16 bits

This value must be programmed with all memory types including synchronous

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 12

static memory.

This value must not change during normal operation.

18:16 R/W RT3<2:0> ROM type

000 - Nonburst ROM or Flash Memory

001 - SRAM

010 - Burst-of-four ROM or Flash (with non-burst writes)

011 - Burst-of-eight ROM or Flash (with non-burst writes)

100 - Variable Latency I/O (VLIO)

101 - reserved

110 - reserved

111 - reserved

Burst refers to the device’s timing. When the subsequent reads from the device

take less time than the first read from a device, it is referred to as burst timing.

The address bits must also be taken into account for burst timing devices. For

example, in a burst-of-four device, only the lower two non-byte address bits can

change for burst timing. For 32-bit devices, this is PXA_A [3:2]. The address

order can go 00, 01, 10, 11 where the reads from 01,

10, and 11, take less time to come out of the device. For burst-of-eight devices,

the lower three non-byte address bits can change. Writes to these devices are

non-burst.

For the detail timing, refer to Figure6-20 on Intel PXA255 manual page 6-52 as Figure 7 and

Figure 8. Here the frequency of memory clock is 99.5MHz. The relative parameters are

defined as follows:

* tAS = Address setup to nCS = 1 MEMCLK

* tCES = nCS setup to nWE = 2 MEMCLKs

* tASW = Address setup to nWE low (asserted) = 1 MEMCLK

* tDSWH = Write data setup, DQM to nWE high (deasserted) = (RDN+2) = 4 MEMCLKs

* tDH = Data, DQM hold after nWE high (deasserted) = 1 MEMCLK

* tCEH = nCS held asserted after nWE deasserted = 1 MEMCLK

* tAH = Address hold after nWE deasserted = 1 MEMCLK

* nWE high time between burst beats = 2 MEMCLKs

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 13

Figure 7. 32-bit SRAM Write Timing Diagram

Figure 8. 32-bit SRAM Read Timing Diagram

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 14

V. AMI-120 bus memory map

Advantech programs partial intel PXA255 processor static chip select 3 memory block for customized

AMI-120 modules memory or I/O control. We also reserved static chip select 4 for Advantech

companion chip to expand more I/O interface and make the system more powerful. Besides, chip select

5 is also reserved for access external display controller to enhance the display performance. The partial

memoy block of static chip select 3 is from physical address 0x0E80 0000h to 0x0EFF FFFFh(total

8 MB). User can design glue logic circuit or use CPLD to decode this memory block. That is, when

nPXA_CS3 is asserted and address PXA 23:25 are “101”, these block will be accessed and the

corresponse chip select signal will be asserted. Don’t access other memory block of the rest static chip

select3. Because Advantech has used the rest block for controlling PCM-7220 I/O devices like buzzer

and so on. We recommend that customers use the 8MB(0x0E80 0000h~0x0EFF FFFFh) memory block

to design the AMI-120 modules.

VI. AMI-120 module SW development

This section describes how user develops his designed Windows CE drivers or applications to merge

into PCM-7220 system. We here focus on the explanation for the kernel interface of PCM-7220 Board

Support Package that user-specific drivers or applications would link with. And we expect the user is

familiar with Microsoft Windows CE Platform Builder.

The PCM-7220 Board Support Package contains the OS components, device drivers, and applications

in binary form that are ready-to-wear by user. Additionally, after installing this BSP with Microsoft

Windows CE Platform Builder, user can add and remove the components, modify the registry settings,

as well as develop specific drivers for his distinctive hardware features on AMI module to make a

adaptable image.

A. Memory Map of AMI-120
Definitions:
#define AMI_RESERVED1_PHYSICAL 0x0E800000
#define AMI_RESERVED2_PHYSICAL 0x0EC00000
#define AMI_RESERVED1_U_VIRTUAL 0xB4800000
#define AMI_RESERVED2_U_VIRTUAL 0xB4C00000

Sample Program:
volatile unsigned *pUserRegister = NULL;

if(!pUserRegister) {

 if(!(pUserRegister=VirtualAlloc(0,0x1000,MEM_RESERVE,PAGE_NOACCESS))) {

 RETAILMSG(1, (TEXT("VirtualAlloc() failed!\r\n")));

 }

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 15

 else {

if(!VirtualCopy((PVOID)pUserRegister,(PVOID)AMI_RESERVED1_U_VIRTUAL,0x1000,PAGE_READWRITE|PAGE_

NOCACHE)) {

 VirtualFree((PVOID)pUserRegister, 0, MEM_RELEASE);

 pUserRegister = NULL;

 RETAILMSG(1, (TEXT("VirtualCopy() failed!\r\n")));

 }

 else {

 RETAILMSG(1, (TEXT("VirtualCopy() succeed!\r\n")));

 //To do user’s register controlling here…

pUserRegister = 0xff;

 }

 }

}

return TRUE;

B. Available GPIOs on AMI-120:

PXA_GPIO3 (Pin C3)

PXA_GPIO7 (Pin B4)

PXA_GPIO9 (Pin D3)

PXA_GPIO19 (Pin D29)

PXA_GPIO20 (Pin D28)

PXA_GPIO22 (Pin C29)

PXA_GPIO27 (Pin A3)

Sample Program:
#include "xsc1.h"

volatile GPIO_REGS *pGPIOReg = NULL;

if(!pGPIOReg) {

 if(!(pGPIOReg=(volatile GPIO_REGS *)VirtualAlloc(0,0x1000,MEM_RESERVE,PAGE_NOACCESS)))

{

 RETAILMSG(1, (TEXT("VirtualAlloc() failed!\r\n")));

 }

 else

 if(!VirtualCopy((PVOID)pGPIOReg,(PVOID)GPIO_BASE_U_VIRTUAL,0x1000,

PAGE_READWRITE|PAGE_NOCACHE)) {

 VirtualFree((PVOID)pGPIOReg, 0, MEM_RELEASE);

 pGPIOReg = NULL;

 RETAILMSG(1, (TEXT("VirtualCopy() failed!\r\n")));

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 16

 }

 else {

 RETAILMSG(1, (TEXT("VirtualCopy() succeed!\r\n")));

 }

}

//Disable GPIO Alternative Function

pGPIOReg->GAFR0_x &= ~GPIO_3_AF3;

//Set GPIO Direction as Output

pGPIOReg->GPDR_x |= GPIO_3;

//Set GPIO Level High

pGPIOReg->GPSR_x |= GPIO_3;

//Set GPIO Level Low

v_pGPIOReg->GPCR_x |= GPIO_3;

return TRUE;

C. PCM-7220 BSP Installation:
After installing PCM_7220_BSP.msi, the BSP folder, $(_WINCEROOT)\Platform\PCM_7220, will be

created. This folder includes the sub-folders:

.\Advantech\ Retail : Contains the Advantech target platform ready-made components.

.\Files : Contains modifiable platform REG and BIB configuration files

.\Gwe\Buildexe: Contains the Gwes.exe building environment.

.\Kernel\Buildexe: Contains the Kern.exe building environment.

.\Kernel\AdvHal: Contains user hardware adaptation layer interface.

Firstly, user could develop his driver with standard Windows CE device drivers APIs.

Then, if the driver uses a system interrupt vector (defined in AdvOalintr.h), user should modify the

relative gpio definitions in the kernel interrupt service routine (AdvHal.c). Finally, rebuild the platform

to make a new image and test.

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 17

Sample Interrupt-Service-Thread of user developed driver:

#include <nkintr.h>

#include <Pkfuncs.h>

#include <AdvOalIntr.h>

// ...

BOOL bStopThread = TRUE;

HANDLE hUserIntrEvent = NULL;

HANDLE hUserThreadTerminatedEvent = NULL;

DWORD dwTriggerCount = 0;

void UserIntrThread(DWORD dwParam)

{

 // ...

 SetThreadPriority(GetCurrentThread(),THREAD_PRIORITY_ABOVE_NORMAL);

 hUserThreadTerminatedEvent=CreateEvent(NULL,FALSE,FALSE,NULL);

 if(hUserThreadTerminatedEvent==NULL)

 return;

 hUserIntrEvent = CreateEvent(NULL,FALSE,FALSE,NULL);

 if(hUserIntrEvent==NULL)

 return;

 else {

 InterruptDisable(SYSINTR_USERGPIO1);

 if(InterruptInitialize(SYSINTR_USERGPIO1,hUserIntrEvent,NULL,0)) {

 while(!bStopThread) {

 if(WaitForSingleObject(hUserIntrEvent,INFINITE)==WAIT_OBJECT_0) {

 dwTriggerCount++;

 RETAILMSG(1, (TEXT("dwTriggerCount=0x%x \r\n"), dwTriggerCount));

 InterruptDone(SYSINTR_USERGPIO1);

 }

 }

 InterruptDisable(SYSINTR_USERGPIO1);

 SetEvent(hUserThreadTerminatedEvent);

 }

 else

 return;

 }

}

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 18

User adaptable kernel interface:

// ***

// @func BOOL | AdvOEMInterruptEnable | Enable a hardware interrupt

// @rdesc Returns TRUE if valid interrupt ID or FALSE if invalid ID.

// @comm This function is called by the PCM-7220 Wince Kernel

// when a device driver calls InterruptInitialize().

// ***

BOOL AdvOEMInterruptEnable(DWORD idInt, LPVOID pvData, DWORD cbData)

{

 switch(idInt) {

 case SYSINTR_USERGPIO1:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptEnable: SYSINTR_USERGPIO1.\r\n"));

 GPIO_DisableAlternativeFunction(USERGPIO1);

 GPIO_SetDirectionAsInput(USERGPIO1);

 GPIO_EnableRisingEdgeTrigger(USERGPIO1);

 GPIO_DisableFallingEdgeTrigger(USERGPIO1);

 return TRUE;

/*

case SYSINTR_USERGPIO2:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptEnable: SYSINTR_USERGPIO2.\r\n"));

GPIO_DisableAlternativeFunction(USERGPIO2);

 GPIO_SetDirectionAsInput(USERGPIO2);

 GPIO_EnableRisingEdgeTrigger(USERGPIO2);

 GPIO_DisableFallingEdgeTrigger(USERGPIO2);

 return TRUE;

 ...

*/

}

return FALSE;

}

// ***

// @func BOOL | AdvOEMInterruptDisable | Disable a hardware interrupt

// @rdesc Returns TRUE if valid interrupt ID or FALSE if invalid ID.

// @comm This function is called by the PCM-7220 WinCE Kernel

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 19

// when a device driver calls InterruptDisable().

// ***

BOOL AdvOEMInterruptDisable(DWORD idInt)

{

 switch(idInt) {

case SYSINTR_USERGPIO1:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptDisable: SYSINTR_USERGPIO1.\r\n"));

GPIO_DisableRisingEdgeTrigger(USERGPIO1);

 GPIO_DisableFallingEdgeTrigger(USERGPIO1);

 GPIO_ClearDetectedInterrupt(USERGPIO1);

 return TRUE;

/*

case SYSINTR_USERGPIO2:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptDisable: SYSINTR_USERGPIO2.\r\n"));

 GPIO_DisableRisingEdgeTrigger(USERGPIO2);

 GPIO_DisableFallingEdgeTrigger(USERGPIO2);

 GPIO_ClearDetectedInterrupt(USERGPIO2);

 return TRUE;

 ...

*/

 }

 return FALSE;

}

// ***

// @func BOOL | AdvOEMInterruptDone | Signal completion of interrupt processing

// @rdesc Returns TRUE if valid interrupt ID or FALSE if invalid ID.

// @comm AdvOEMInterruptDone is called by the PCM-7220 WinCE Kernel

// when a device driver calls InterruptDone().

// ***

BOOL AdvOEMInterruptDone(DWORD idInt)

{

 switch(idInt) {

 case SYSINTR_USERGPIO1:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptDone: SYSINTR_USERGPIO1.\r\n"));

Your ePlatform Partner
How to Implement AMI Modules From SOM-A200 series CSB AMI-120 Interface V1.14

 20

 GPIO_EnableRisingEdgeTrigger(USERGPIO1);

 return TRUE;

/*

case SYSINTR_USERGPIO2:

 //lpWriteDebugStringFunc(TEXT("OEMInterruptDone: SYSINTR_USERGPIO2.\r\n"));

GPIO_EnableRisingEdgeTrigger(USERGPIO2);

 return TRUE;

 ...

*/

 }

 return FALSE;

}

// ***

// @func: AdvOEMInterruptHandler

// @comm: Figure out what caused the interrupt, then return the interrupt ID for that driver

// ***

int AdvOEMInterruptHandler()

{

 if(GPIO_InterruptDetected(USERGPIO1))

 {

 //lpWriteDebugStringFunc(TEXT("Got SYSINTR_USERGPIO1 Interrupt.\r\n"));

 GPIO_DisableRisingEdgeTrigger(USERGPIO1);

 GPIO_ClearDetectedInterrupt(USERGPIO1);

 return(SYSINTR_USERGPIO1);

 }

 // ...

 return SYSINTR_NOP;

}

