
 - 1 -

EH-8100
Ethernet & TCP/IP

Protocols Stack
Reference Guide

 - 2 -

Table of Contents

� Description …………………………………………………………… 3

� Features ………………………………………………………………. 3

� Hardware Ethernet&TCP/IP Protocols stack Registers Map … 4

� Register Definitions …………………………………………………. 6

1. Control Registers ………………………………………………. 6

2. System Registers ………………………………………………. 9

3. Pointer Registers ………………………………………………. 10

4. Channel Registers ……………………………………………… 12

� Internal Memory and Registers …………………………………… 15

� Description of Functions …………………………………………… 16

1. Initialization ……………………………………………………… 16

2. TCP Protocol ……………………………………………………. 16

3. UDP Protocol ……………………………………………………. 22

4. IP Layer RAW Mode ……………………………………………. 25

5. MAC Layer RAW Mode ………………………………………… 27

� Appendix A. Programming Guide ………………………………… 30

 - 3 -

Description

The Ethernet interface of EH-8100-Lx is an LSI of hardware protocol stack that provides an easy,
low-cost solution for high-speed Internet connectivity for digital devices by allowing simple
installation of TCP/IP stack in the hardware.

The Ethernet interface of EH-8100-Lx offers system designers a quick, easy way to add Ethernet
networking functionality to any product. Implementing this LSI into a system can completely
offload Internet connectivity and processing standard protocols from the system, thereby
significantly reducing the software development cost.

The Ethernet interface of EH-8100-Lx contains TCP/IP Protocol Stacks such as TCP, UDP, IP, ARP
and ICMP protocols, as well as Ethernet protocols such as Data Link Control and MAC protocol.

The Ethernet interface of EH-8100-Lx offers a socket API (Application Programming Interface) that
is similar to the windows socket API.

The Ethernet interface of EH-8100-Lx can be applied to handheld devices including Internet phones,
VoIP SOC chips, Internet MP3 players, handheld medical devices, LAN cards for Web servers,
cellular phones and many other non-portable electronic devices such as large consumer electronic
products.

 Features

� Hardware Internet protocols included:

TCP, IP Ver.4, UDP, ICMP, ARP

� Hardware Ethernet protocols included:

DLC, MAC

� Supports 4 independent connections simultaneously

� Internal ICMP responds to PING commands

� Protocol processing speed: full-duplex 4~5 Mbps

� Socket API support for easy application programming

� Supports full-duplex mode

� Internal 16Kbytes Dual-port SRAM for data buffer

 - 4 -

Table1. Hardware Ethernet & TCP/IP Protocols stack Registers Map
 (Register Base Address is 0x8000)

Address Register Bit Definitions
0x00 C0_CR S/W Reset Recv Send Close Listen Connect Sock_Init Sys_Init

0x01 C1_CR Memory Test Recv Send Close Listen Connect Sock_Init

0x02 C2_CR Recv Send Close Listen Connect Sock_Init

0x03 C3_CR Recv Send Close Listen Connect Sock_Init

0x04 C0_ISR Recv_OK Send_OK Timeout Closed Established SInit_OK Init_OK

0x05 C1_ISR Recv_OK Send_OK Timeout Closed Established SInit_OK

0x06 C2_ISR Recv_OK Send_OK Timeout Closed Established SInit_OK

0x07 C3_ISR Recv_OK Send_OK Timeout Closed Established SInit_OK

0x08 IR C3R C2R C1R C0R C3 C2 C1 C0

0x09 IMR IM_C3R IM_C2R IM_C1R IM_C0R IM_C3 IM_C2 IM_C1 IM_C0

0x0A – 0x0B Reserved

0x0C Reserved �

0x0D Reserved

0x0E Reserved

0x0F Reserved

0x10 – 0x13 C0_RW_PR Channel 0 Rx Write Pointer Register

0x14 – 0x17 C0_RR_PR Channel 0 Rx Read Pointer Register

0x18 – 0x1B C0_TA_PR Channel 0 Tx ACK Pointer Register

0x1C – 0x1F C1_RW_PR Channel 1 Rx Write Pointer Register

0x20 – 0x23 C1_RR_PR Channel 1 Rx Read Pointer Register

0x24 – 0x27 C1_TA_PR Channel 1 Tx ACK Pointer Register

0x28 – 0x2B C2_RW_PR Channel 2 Rx Write Pointer Register

0x2C – 0x2F C2_RR_PR Channel 2 Rx Read Pointer Register

0x30 – 0x33 C2_TA_PR Channel 2 Tx ACK Pointer Register

0x34 – 0x37 C3_RW_PR Channel 3 Rx Write Pointer Register

0x38 – 0x3B C3_RR_PR Channel 3 Rx Read Pointer Register

0x3C – 0x3F C3_TA_PR Channel 3 Tx ACK Pointer Register

0x40 – 0x43 C0_TW_PR Channel 0 Tx Write Pointer Register

0x44 – 0x47 C0_TR_PR Channel 0 Tx Read Pointer Register

0x48 – 0x4B Reserved

0x4C – 0x4F C1_TW_PR Channel 1 Tx Write Pointer Register

0x50 – 0x53 C1_TR_PR Channel 1 Tx Read Pointer Register

0x54 – 0x57 Reserved

0x58 – 0x5B C2_TW_PR Channel 2 Tx Write Pointer Register

0x5C – 0x5F C2_TR_PR Channel 2 Tx Read Pointer Register

0x60 – 0x63 Reserved

0x64 – 0x67 C3_TW_PR Channel 3 Tx Write Pointer Register

0x68 – 0x6B C3_TR_PR Channel 3 Tx Read Pointer Register

0x6C – 0x7F Reserved

0x80 – 0x83 GAR Gateway Address Register

0x84 – 0x87 SMR Subnet Mask Register

0x88 – 0x8D SHAR Source Hardware Address Register

0x8E – 0x91 SIPR Source IP Address Register

 - 5 -

0x92 – 0x93 IRTR Initial Retry Time-value Register

0x94 RCR TC4 TC3 TC2 TC1 TC0

0x95 RMSR Rx data Memory Size Register

0x96 TMSR Tx data Memory Size Register

0x97 – 0x9F Reserved

0xA0 C0_SSR Channel 0 Socket Status Register

0xA1 C0_SOPR Broadcast/ERR NDTimeout/B NDAck SWS/P Protocol Protocol Protocol

0xA2 – 0xA7 Reserved

0xA8 – 0xAB C0_DIR Channel 0 Destination IP Address Register

0xAC – 0xAD C0_DPR Channel 0 Destination Port Register

0xAE – 0xAF C0_SPR Channel 0 Source Port Register

0xB0 C0_IPR Channel 0 IP Protocol Register

0xB1 C0_TOSR Channel 0 TOS (type of service) Register

0xB2 – 0xB3 C0_MSSR Channel 0 MSS (maximum segment size) Register

0xB4 – 0xB7 Reserved

0xB8 C1_SSR Channel 1 Socket Status Register
0xB9 C1_SOPR Broadcast NDTimeout NDAck SWS Protocol Protocol Protocol
0xBA – 0xBF Reserved

0xC0 – 0xC3 C1_DIR Channel 1 Destination IP Address Register

0xC4 – 0xC5 C1_DPR Channel 1 Destination Port Register

0xC6 – 0xC7 C1_SPR Channel 1 Source Port Register

0xC8 C1_IPR Channel 1 IP Protocol Register

0xC9 C1_TOSR Channel 1 TOS (type of service) Register

0xCA – 0xCB C1_MSSR Channel 1 MSS (maximum segment size) Register

0xCC – 0xCF Reserved

0xD0 C2_SSR Channel 2 Socket Status Register
0xD1 C2_SOPR Broadcast NDTimeout NDAck SWS Protocol Protocol Protocol
0xD2 – 0xD7 Reserved

0xD8 – 0xDB C2_DIR Channel 2 Destination IP Address Register

0xDC – 0xDD C2_DPR Channel 2 Destination Port Register

0xDE – 0xDF C2_SPR Channel 2 Source Port Register

0xE0 C2_IPR Channel 2 IP Protocol Register

0xE1 C2_TOSR Channel 2 TOS (type of service) Register

0xE2 – 0xE3 C2_MSSR Channel 2 MSS (maximum segment size) Register

0xE4 – 0xE7 Reserved

0xE8 C3_SSR Channel 3 Socket Status Register
0xE9 C3_SOPR Broadcast NDTimeout NDAck SWS Protocol Protocol Protocol
0xEA – 0xEF Reserved

0xF0 – 0xF3 C3_DIR Channel 3 Destination IP Address Register

0xF4 – 0xF5 C3_DPR Channel 3 Destination Port Register

0xF6 – 0xF7 C3_SPR Channel 3 Source Port Register

0xF8 C3_IPR Channel 3 IP Protocol Register

0xF9 C3_TOSR Channel 3 TOS (type of service) Register

0xFA – 0xFB C3_MSSR Channel 3 MSS (maximum segment size) Register

0xFC – 0xFF Reserved

 - 6 -

Register Definitions.

Register sets are categorized into (i) control registers related to command, status and interrupt, (ii)
system registers for gateway address, subnet mask, source IP, source HA (Hardware Address) and
timeout value, (iii) pointer registers for managing to send, receive data, and (iv) channel registers
that control operation of each channel. R/W access to reserved register is not allowed, and also,
writing on read-only register is not allowed.

1. Control Registers

C0_CR (Channel 0 Command Register) [R/W, 0x00]

This register commands Channel 0 socket to initialize, connect, close, transmit and receive data.
Sys_Init command is used to set the gateway, subnet mask, source IP and source H/W Address. The
same command is used to close the socket in all channels.
Sock_Init, Connect, Listen, Close, Send and Recv are used when initializing, establishing a
connection, terminating a connection, sending and receiving data for Channel 0 socket. Each
corresponding bit is automatically cleared after executing the command.
Sock_Init command opens the corresponding Channel in TCP, UDP, RAW mode according to the
protocol value as set at C0_SOPR (Channel 0 Socket Option Protocol Register).
MCU can initialize the internal setting value of the chip by using S/W Reset.
Each bit in this register is automatically cleared after executing the command.

7 6 5 4 3 2 1 0

S/W Reset Recv Send Close Listen Connect Sock_Init Sys_Init

Bit Symbol Description

D0 Sys_Init Command to set Gateway IP Address, Subnet Mask, Source H/W Address,
Source IP Address

D1 Sock_Init Command to set corresponding protocol at C0_SOPR and open Channel 0
socket

D2 Connect Command for Channel 0 socket to make a connection to the server

D3 Listen Command to stand by for connection when Channel 0 socket acts in server
mode

D4 Close Command to terminate connection and close Channel 0 socket
D5 Send Command to transmit Channel 0 socket data
D6 Recv Command to receive Channel 0 socket data
D7 S/W Reset S/W Reset command

C1_CR (Channel 1 Command Register) [R/W, 0x01]

This register commands Channel 1 Socket to initialize, connect, close, transmit and receive data.
Sock_Init, Connect, Listen, Close, Send and Recv are used when initializing, establishing a
connection, terminating a connection, sending and receiving data for Channel 1 socket. Each
corresponding bit is automatically cleared after executing the command.
Memory test command is used to verify transmission and reception memory where MCU reads and
writes for the transmission and reception memory. Set memory test bit to ‘1’ to become toggled as
‘0’, ‘1’ and It acts in memory test mode when in ‘1’. Memory test bit needs to become set at ‘0’ in
order to execute normal data transmission and reception.

7 6 5 4 3 2 1 0

Memory Test Recv Send Close Listen Connect Sock_Init

Bit Symbol Description
D0 Reserved
D1 Sock_Init Sets corresponding protocol at C1_SOPR and opens Channel 1 socket

D2 Connect Command for Channel 1 socket to act in client mode to make a connection to
the server

 - 7 -

D3 Listen Command to stand by for connection when Channel 1 socket acts in server
mode

D4 Close Command to terminate connection and close Channel 1 socket
D5 Send Command to transmit Channel 1 socket data
D6 Recv Command to receive Channel 1 socket data
D7 Memory Test Command to set memory test mode

C2_CR, C3_CR (Channel 2, 3 Command Register) [R/W, 0x02, 0x03]

The register commands each Channel 2, 3 sockets to initialize, connect, close, transmit and receive
data.
Sock_Init, Connect, Listen, Close, Send and Recv are used when initializing, establishing a
connection, terminating a connection, sending and receiving data for corresponding socket. Each
corresponding bit is automatically cleared after executing the command.

7 6 5 4 3 2 1 0
 Recv Send Close Listen Connect Sock_Init

Bit Symbol Description

D0 Reserved

D1 Sock_Init Sets corresponding protocol at Cx_SOPR and opens corresponding channel
socket

D2 Connect Command for corresponding channel socket to act in client mode to make a
connection to the server

D3 Listen Command to stand by for connection when corresponding channel socket acts
in server mode

D4 Close Command to terminate connection and close corresponding channel socket
D5 Send Command to transmit corresponding channel socket data
D6 Recv Command to receive corresponding channel socket data
D7 Reserved

C0_ISR (Channel 0 Interrupt Status Register) [R, 0x04]

This register notifies the outcome of Channel 0 socket command.
This register becomes cleared as 0x00 by read operation.
Init_OK notifies the completion of Sys_Init command.
Established notifies the completion of a connection executed by connection set-up command
(Connect, Listen).
Timeout notifies an occurrence of a time out while executing connection set-up command (Connect,
Listen) or Send command.
SInit_OK, Closed, Send_OK and Recv_OK each notifies the completion of Sock_Init, Close, Send
and Recv commands, respectively.

7 6 5 4 3 2 1 0

Init_OK SInit_OK Established Closed Timeout Send_OK Recv_OK

Bit Symbol Description
D0 Init_OK Interrupt status bit for completion of Sys_Init command
D1 SInit_OK Interrupt status bit for completion of Channel 0 socket Sock_Init command
D2 Established Interrupt status bit for completion of Channel 0 socket connection set-up
D3 Closed Interrupt status bit for completion of Channel 0 socket connection endin

D4 Timeout Interrupt status bit for occurrence of time out during Channel 0 socket
connection set-up or data transmission

D5 Send_OK Interrupt status bit for completion of Channel 0 socket Send command
D6 Recv_OK Interrupt status bit for completion of Channel 0 socket Recv command
D7 Reserved

 - 8 -

C1_ISR, C2_ISR, C3_ISR (Channel 1, 2, 3 Interrupt Status Register) [R, 0x05, 0x06, 0x07]

This register notifies the outcome of the command of each Channel 1, 2 and 3.
This register becomes cleared as 0x00 by read operation.
Established notifies the completion of a connection executed by connection set-up command
(Connect, Listen).
Timeout notifies an occurrence of a time out while executing connection set-up command (Connect,
Listen) or Send command.
SInit_OK, Closed, Send_OK and Recv_OK each notifies the completion of Sock_Init, Close, Send
and Recv commands, respectively.

7 6 5 4 3 2 1 0
 Recv_OK Send_OK Timeout Closed Established SInit_OK

Bit Symbol Description

D0 Reserved

D1 SInit_OK Interrupt status bit for completion of corresponding channel socket Sock_Init
command

D2 Established Interrupt status bit for completion of corresponding channel socket connection
set-up

D3 Closed Interrupt status bit for completion of corresponding channel socket connection
ending

D4 Timeout Interrupt status bit for occurrence of time out during corresponding channel
socket connection set-up or data transmission

D5 Send_OK Interrupt status bit for completion of corresponding channel socket Send
command

D6 Recv_OK Interrupt status bit for completion of corresponding channel socket Recv
command D7 Reserved

D7 Reserved

IR (Interrupt Register) [R/W, 0x08]

This register is used to sort channel with occurring interrupt.
C0, C1, C2 and C3 bit notify each of 0, 1, 2 and 3 channels that an interrupt has occurred. MCU can
identify which interrupt has occurred by examining the Channel Interrupt Status Register of the
corresponding channel.
C0R, C1R, C2R and C3R Bit notify that data transmission has occurred for 0, 1, 2 and 3 Channel.
This register can clear the interrupt signal by writing ‘1’ at the corresponding bit.

7 6 5 4 3 2 1 0

C3R C2R C1R C0R C3 C2 C1 C0

Bit Symbol Description
D0 C0 Occurrence of Channel 0 Socket Interrupt
D1 C1 Occurrence of Channel 1 Socket Interrupt
D2 C2 Occurrence of Channel 2 Socket Interrupt
D3 C3 Occurrence of Channel 3 Socket Interrupt
D4 C0R Occurrence of Channel 0 Socket data receipt
D5 C1R Occurrence of Channel 1 Socket data receipt
D6 C2R Occurrence of Channel 2 Socket data receipt
D7 C3R Occurrence of Channel 3 Socket data receipt

IMR (Interrupt Mask Register) [R/W, 0x09]

This register is used to mask an interrupt from each bit of the corresponding interrupt register.
Interrupt is enabled when the corresponding bit of the interrupt register is set by setting the
corresponding bit at ‘1’.

 - 9 -

7 6 5 4 3 2 1 0
IM_C3R IM_C2R IM_C1R IM_C0R IM_C3 IM_C2 IM_C1 IM_C0

Bit Symbol Description

D0 IM_C0 Channel 0 Socket Interrupt Enable.
D1 IM_C1 Channel 1 Socket Interrupt Enable.
D2 IM_C2 Channel 2 Socket Interrupt Enable.
D3 IM_C3 Channel 3 Socket Interrupt Enable.
D4 IM_C0R Channel 0 Socket data receipt Interrupt Enable.
D5 IM_C1R Channel 1 Socket data receipt Interrupt Enable.
D6 IM_C2R Channel 2 Socket data receipt Interrupt Enable.
D7 IM_C3R Channel 3 Socket data receipt Interrupt Enable.

2. System Registers

GAR (Gateway Address Register) [R/W, 0x80 – 0x83]

This register sets up the default gateway address to be used in the system, which is required to be set
IP address before executing Sys_Init command.

SMR (Subnet Mask Register) [R/W, 0x84 – 0x87]

This register sets up the subnet mask to be used in the system, which is required to be set up before
executing Sys_Init command.

SHAR (Source Hardware Address Register) [R/W, 0x88 – 0x8D]

This register sets up the HA to be used in the system, which is required to be set up before executing
Sys_Init command.

SIPR (Source IP Address Register) [R/W, 0x8E – 0x91]

This register sets up the IP to be used in the system, which is required to be set up before executing
Sys_Init command.

IRTR (Initial Retry Time-value Register) [R/W, 0x92 – 0x93]

This register sets up the timer value for initial re-transmission when using the TCP, and timer value
1 is equivalent to 100us.

Value Timer (ms)

0x03E8 100
0x07D0 200
0x0FA0 400

RCR (Retry Count Register) [R/W, 0x94]

This register assigns the number of retry when re-transmission occurs, and timeout interrupt occurs
when retransmission exceeds the number of retry.

RMSR (Rx data Memory Size Register) [R/W, 0x95]

This register allocates 8KB of received memory for each channel.

CH3 CH2 CH1 CH0
S1 S0 S1 S0 S1 S0 S1 S0

 - 10 -

S1 S0 Memory Size
0 0 1KB
0 1 2KB
1 0 4KB
1 1 8KB

2 bits of S1, S0 are allocated for each channel, and the memory for receiving is allocated according
to the set-up value as shown in the table above.

TMSR (Tx data Memory Size Register) [R/W, 0x96]

This register allocates 8KB of transmitted memory for each channel.

CH3 CH2 CH1 CH0
S1 S0 S1 S0 S1 S0 S1 S0

S1 S0 Memory Size
0 0 1KB
0 1 2KB
1 0 4KB
1 1 8KB

2 bits of S1,S0 are allocated for each channel, and the memory for sending is allocated according to
the setup value as shown in the table above.

3. Pointer Registers

In order to read pointer registers, the shadow register of the corresponding pointer needs to be read
and time delay of Tx_CLK * 4 is required before reading the corresponding pointer register. (Access
by EH-8100-Lx MCU I/F is based on 1Byte unit, but the pointer register is comprised of 4Bytes.
Therefore, shadow register is used in order for MCU to properly read 4Byte pointer.)
To write, no access to the shadow register or time delay is necessary.

Shadow Registers Address Applicable Pointer Registers

C0_SRW_PR 0x1E0 C0_ RW_PR

C0_SRR_PR 0x1E1 C0_ RR_PR

C0_STA_PR 0x1E2 C0_ TA_PR

C1_SRW_PR 0x1E3 C1_ RW_PR

C1_SRR_PR 0x1E4 C1_ RR_PR

C1_STA_PR 0x1E5 C1_ TA_PR

C2_SRW_PR 0x1E6 C2_ RW_PR

C2_SRR_PR 0x1E7 C2_ RR_PR

C2_STA_PR 0x1E8 C2_ TA_PR

C3_SRW_PR 0x1E9 C3_ RW_PR

C3_SRR_PR 0x1EA C3_ RR_PR

 - 11 -

C3_STA_PR 0x1EB C3_ TA_PR

C0_STW_PR 0x1F0 C0_ TW_PR

C0_STR_PR 0x1F1 C0_ TR_PR

C1_STW_PR 0x1F3 C1_ TW_PR

C1_STR_PR 0x1F4 C1_ TR_PR

C2_STW_PR 0x1F6 C2_ TW_PR

C2_STR_PR 0x1F7 C2_ TR_PR

C3_STW_PR 0x1F9 C3_ TW_PR

C3_STR_PR 0x1FA C3_ TR_PR

RW_PR (Rx Write Pointer Register) [R/W, C0 : 0x10 – 0x13, C1 : 0x1C – 0x1F,

C2 : 0x28 – 0x2B, C3 : 0x34 – 0x37]

Included in each channel, this register displays the data end pointer when receiving data. The
register is managed internally by the Ethernet I/F of EH-8100-Lx and increases according to the size
of the data received.
MCU receives and processes the data from Rx Read Pointer to Rx Writer Pointer of the
corresponding channel.

RR_PR (Rx Read Pointer Register) [R/W, C0 : 0x14 – 0x17, C1 : 0x20 – 0x23,

C2 : 0x2C – 0x2F, C3 : 0x38 – 0x3B]

Included in each channel, this register displays the data start pointer when receiving data.
After processing the received data, MCU updates Rx Read Pointer as the pointer of the processed
data and releases Recv Command.

TW_PR (Tx Write Pointer Register) [R/W, C0 : 0x40 – 0x43, C1 : 0x4C – 0x4F,

C2 : 0x58 – 0x5B, C3 : 0x64 – 0x67]

Included in each channel, this register displays the data end pointer of the data to be transmitted
when transmitting data.
For transmission, MCU writes the data to be transmitted from Tx Write Pointer of the corresponding
channel, and Tx Write Pointer needs to be updated with a new value after the data is copied.
Transmission is made after executing the Send command.

TR_PR (Tx Read Pointer Register) [R/W, C0 : 0x44 – 0x47, C1 : 0x50 – 0x53,

C2 : 0x5C – 0x5F, C3 : 0x68 – 0x6B]

Included in each channel, this register displays the current working pointer of the data to be
transmitted when transmitting data.
The register, used internally in the Ethernet I/F of EH-8100-Lx, displays the pointer to start
transmission when transmission is made by send command.

TA_PR (Tx Ack Pointer Register) [R/W, C0 : 0x18 – 0x1B, C1 : 0x24 – 0x27,

C2 : 0x30 – 0x33, C3 : 0x3C – 0x3F]

Included in each channel, this register displays the start pointer of the data to be transmitted when
transmitting data.
Driver uses this register and Tx Write Pointer to calculate free size of Tx Buffer.
In other words, the difference in value of Tx Write Pointer and Tx Ack Pointer is the buffer size
being used.

 - 12 -

4. Channel Registers

SSR (Socket State Register) [R, C0 : 0xA0, C1 : 0x B8, C2 : 0x D0, C3 : 0x E8]

To display the socket state of the corresponding channel.

Value State Meaning
0x00 SOCK_CLOSED Socket is closed

0x01 SOCK_ARP Standing by for reply after transmitting ARP
Request

0x02 SOCK_LISTEN Standing by for connection set-up to the client
when acting in passive mode

0x03 SOCK_SYNSENT Standing by for SYN,ACK after transmitting
SYN for connection set-up when acting in
active mode

0x04 SOCK_SYNSENT_ACK Connection set-up is complete after SYN,ACK
is received and ACK is transmitted in active
mode

0x05 SOCK_SYNRECV SYN,ACK is being transmitted after receiving
SYN from the client in listen state, passive
mode

0x06 SOCK_ESTABLISHED Connection set-up is complete in active, passive
mode

0x07 SOCK_CLOSE_WAIT Connection being terminated

0X08 SOCK_LAST_ACK Connection being terminated

0X09 SOCK_FIN_WAIT1 Connection being terminated

0X0A SOCK_ FIN_WAIT2 Connection being terminated

0X0B SOCK_CLOSING Connection being terminated

0X0C SOCK_TIME_WAIT Connection being terminated

0X0D SOCK_RESET Connection is being terminated after receiving
reset packet from the peer

0X0E SOCK_INIT Socket initializing

0X0F SOCK_UDP Applicable channel is initialized in UDP mode

0X10 SOCK_RAW Applicable channel is initialized in IP layer
RAW mode

0X11 SOCK_UDP_ARP Standing by for reply after transmitting ARP
request packet to the destination for UDP
transmission

0X12 SOCK_UDP_DATA Data transmission in progress in UDP or RAW
mode

0X13 SOCK_RAW_INIT The Ethernet I/F of EH-8100-Lx initialized in
MAC layer RAW mode

 - 13 -

SOPR (Socket Option and Protocol Register) [R/W, C0 : 0xA1, C1 : 0x B9,
C2 : 0x D1, C3 : 0x E9]

This register sets up socket option or protocol of the corresponding channel.

7 6 5 4 3 2 1 0

Broadcast/ERR NDTimeout/B NDAck SWS/P Protocol Protocol Protocol

Bit Symbol Description

D0
D1
D2

Protocol Sets up corresponding channel in TCP, UDP, IP Layer RAW mode or
MAC Layer RAW mode

Value Meaning
 000 Closed
 001 SOCK_STREAM(TCP)
 010 SOCK_DGRAM(UDP)
 011 SOCK_IPL_RAW(IP Layer RAW Mode)
 100 SOCK_MACL_RAW(MAC Layer RAW Mode)

D3 Reserved

D4 SWS/P Silly Window Syndrome
‘0’: prevents Silly Window Syndrome when using TCP
‘1’: does not prevent Silly Window Syndrome when using TCP

When using MAC Layer RAW mode, promiscuous packet (packet with
specific MAC address) can be received by when C0_SOPR sets the bit as
‘1’

D5 NDAck No Delayed ACK
‘0’: uses delayed ACK
‘1’: does not use delayed ACK – ACK is transmitted immediately
upon receiving the data packet

D6 NDTimeout/B No Dynamic Timeout
‘0’: uses dynamic timeout during operation to set up timeout value
regardless of the set-up value
‘1’: activates by using the timeout value as set up in Timeout Value
When using MAC Layer RAW mode, broadcast packet can be
received by when C0_SOPR sets the bit as ‘1’

D7 Broadcast/ERR Broadcast packet is received and transmitted in IP Layer RAW mode
When using MAC Layer RAW mode, error packet can be received by
when C0_SOPR sets the bit as ‘1’

DIR (Destination IP Address Register) [R/W, C0 : 0xA8 – 0xAB, C1 : 0xC0 – 0xC3,

C2 : 0xD8 – 0xDB, C3 : 0xF0 – 0xF3]

This register sets the Destination IP Address of each channel to be used in setting the TCP
connection. In active mode, IP address needs to be set before executing the Connect command. In
passive mode, EH-8100-Lx sets up the connection and then updates as peer IP internally.

DPR (Destination Port Register) [R/W, C0 : 0xAC – 0xAD, C1 : 0xC4 – 0xC5,
C2 : 0xDC – 0xDD, C3 : 0xF4 – 0xF5]

This register sets the Destination Port number of each channel to be used in setting the TCP
connection. In active mode, port number needs to be set before executing the Connect command. In
passive mode,
EH-8100-Lx sets up the connection and then updates as peer port number internally.

SPR (Source Port Register) [R/W, C0 : 0xAE – 0xAF, C1 : 0xC6 – 0xC7,

 - 14 -

C2 : 0xDE – 0xDF, C3 : 0xF6 – 0xF7]

This register sets the Source Port number for each channel when using TCP or UDP mode, and the
set-up needs to be made before executing the Sock_Init Command.

IPR (IP Protocol Register) [R/W, C0 : 0xB0, C1 : 0xC8, C2 : 0xE0, C3 : 0xF8]

This IP Protocol Register is used to be set up at the Protocol Field of IP Header when executing the
IP Layer RAW Mode, and the set-up needs to be made before executing the Sock_Init Command.

TOSR (TOS Register) [R/W, C0 : 0xB1, C1 : 0xC9, C2 : 0xE1, C3 : 0xF9]

This register is used to be set up at the TOS (Type Of Service) Field of IP Header, and the set-up
needs to be made before executing the Sock_Init Command.

MSSR (MSS Register) [R/W, C0 : B2 – 0xB3, C1 : 0xCA – 0xCB,

C2 : 0xE2 – 0xE3, C3 : 0xFA – 0xFB]

This register is used for MSS (Maximum Segment Size) of TCP, and the register displays MSS set
by the other party when TCP is activated in Passive Mode.

 - 15 -

Internal Memory and Registers

The Ethernet I/F of EH-8100-Lx Top level Memory Map

FFFFh

 Ethernet Rx Buffer

E000h

 Ethernet Tx Buffer

C000h

 Reserved

Ethernet Control Reg. 8200h
8000h

The Ethernet I/F of EH-8100-Lx internal register and memory are comprised of 512 byte Control
Registers and 16KB data buffer as displayed in the diagram above.

- 0x8000 ~ 0x80FF : Space for Control Registers
- 0x8100 ~ 0x81FF : Space for Shadow Registers
- 0x8200 ~ 0xBFFF : Not used (This space can be used by other devices)
- 0xC000 ~ 0xDFFF : Tx Data Buffer
- 0xE000 ~ 0xFFFF : Rx Data Buffer

Tx data buffer is the memory used for MCU transmission, and MCU can execute ‘write’ but cannot
execute ‘read’. Rx data buffer is the memory used for MCU reception, and MCU can execute ‘read’ but
cannot execute ‘write’. In order to verify the active status of Tx data buffer and Rx data buffer, MCU
can execute both write and read by setting the memory test mode (setting up of C1_CR memory test
bit). In memory test mode, however, The Ethernet I/F of EH-8100-Lx cannot execute proper
transmission and reception of data. Memory test mode must be terminated for normal operation of the
Ethernet I/F of EH-8100-Lx.

 - 16 -

Description of Functions

1. Initialization

In order to use the Ethernet I/F of EH-8100-Lx, the basic registers that are required to run the
Ethernet I/F of EH-8100-Lx need to be set up. The basic registers include GAR (Gateway Address
Register), SMR (Subnet Mask Register), SHAR (Source Hardware Address Register), and SIPR
(Source IP Address Register).
GAR, SMR and SIPR are the network information on which the Ethernet I/F of EH-8100-Lx is
operated, and the registers need to be set according to the operating environment. SHAR is the
Hardware address to be used at the MAC layer of the Ethernet I/F of EH-8100-Lx, and the address
already provided to the manufacturer is used.
After appropriately setting up above registers, the Ethernet I/F of EH-8100-Lx can activate in the
network by executing the sys_init command. Activation can be verified by using Ping (ICMP Echo
request).

2. TCP Protocol

TCP is a connection-oriented protocol. By using three-way handshaking method in executing the
connection set-up and termination process, reliable data transmission and reception are assured.

TCP Initialization Process

In order to use TCP, the protocol field of the corresponding channel’s Cx_SOPR (Socket
Option/Protocol Register of Channel x) needs to be set up as SOCK_STREAM(0x01). After the
channel is activated by sock_init command, Cx_TW_PR (Tx Write Pointer Register of Channel x),
Cx_TR_PR (Tx Read Pointer Register of Channel x), and Cx_TA_PR (Tx Ack Pointer Register of
Channel x) need to be initialized with same value.

TCP Connection Set-up Process

In the Ethernet I/F of EH-8100-Lx, the TCP connection process as directed by Connect or Listen
command is processed internally.
Sending SYN Packet as directed by Connect command is called active open, and standing by for
SYN Packet from peer as directed by Listen command is called passive open.

Active open.

TCP Client mode that knows the IP address and port number of the destination, and the connection
set-up is made ahead.

 - 17 -

Above diagram illustrates the connection set-up process using active open. Each status can be
verified through the socket status register of the corresponding channel.
a. CLOSED state:

channel is initialized by executing sys_init or close command
b. INIT state:

sets the port number (source port register) to be used in the channel and activates the channel
by executing the sock_init command

c. ARP state:
In order to set up connection, MCU sets the Destination IP, Destination Port register and
executes the connect command. Based on this command, the Ethernet I/F of EH-8100-Lx
changes to this state and transmits ARP request packet. When ARP reply packet is received
from the peer under this state, it changes to SYNSENT state and transmits SYN packet. In
case no reply is received from the peer, re-transmission is made. When no reply is received
within the designated timeout duration, timeout occurs and it changes to CLOSED state.

d. SYNSENT state:
In this state, the Ethernet I/F of EH-8100-Lx transmits SYN packet and stands by to receive
SYN,ACK packet from the peer. In case appropriate SYN,ACK packet is received, the
Ethernet I/F of EH-8100-Lx transmits ACK packet and completes the connection set-up to
become changed to ESTABLISHED state. In case no appropriate SYN,ACK packet is
received from the peer, re-transmission of SYN Packet is made. When no reply is received
within the designated timeout duration, timeout occurs and it changes to CLOSED state. Also,
if the peer has no application standing by in passive mode, the peer receives RST packet and
changes to CLOSED state.

Passive open.

In TCP Server mode, stands by for connection set-up from the peer under the Listen command, and
the connection set-up is accepted when requested.

a. CLOSED state:

channel is initialized by executing sys_init or close command
b. INIT state:

sets the port number (source port register) to be used in the channel and activates the channel
by executing the sock_init command

c. LISTEN state:
stands by for connection set-up from the peer. When SYN packet for the corresponding port is
received from the peer, SYN,ACK packet is transmitted and changes to SYNRCVD state.

d. SYNRCVD state:
SYN,ACK packet is transmitted and stands by for ACK from the peer. When reply from the
peer is received, it changes to ESTABLISHED state, and when no reply is received,
SYN,ACK Packet is re-transmitted and changes to CLOSED state upon occurrence of timeout
or receipt of RST packet.

 - 18 -

TCP Connection Termination Process

In line with the connection set-up process, TCP connection termination process also uses three-way
handshaking method.
Sending FIN after receiving Close command from the application is called active close, and closing
after receiving FIN from the peer is called passive close.

Active close

After completing data transmission and reception, the application uses the close command to
terminate the connection set-up. When the connection is terminated under the close command in
such ESTABLISHED state, it is called active close, and the process is illustrated in the left-hand
side of the diagram above.
FIN_WAIT1 state:

changes from the established state under the close command and transmits FIN packet.
Changes to FIN_WAIT2 when ACK for FIN is received fro the peer. Transmits ACK and
changes to CLOSING state when FIN is received from the peer. Transmits ACK and changes
to TIME_WAIT when FIN,ACK is received. In case of no reply, re-transmission is made, and
if no reply is received until timeout occurs, changes to CLOSED state.

FIN_WAIT2 state:
stands by for FIN from the peer. In this state, the Ethernet I/F of EH-8100-Lx does not receive
data from the peer, and if data is received, connection set-up is immediately terminated
through RST. This is because the Ethernet I/F of EH-8100-Lx does not process additional data
in half-close state.

CLOSING state:
produced when the application closes simultaneously. Changes to TIME_WAIT when ACK is
received from the peer.

TIME_WAIT state:
viewed as 2MSL (Maximum Segment Lifetime) WAIT State by TCP. In case FIN is resent
when the peer cannot receive ACK, there is a function where TCP resends the last ACK. In
case TCP connection is in 2MSL wait state, there is another function where other client, server
is blocked from using this connection. In the Ethernet I/F of EH-8100-Lx, considering the
limited resource and for efficient use of the channel, it changes from this state to CLOSED
state without waiting.

Passive close

In passive close, FIN is received from the peer to close in the ESTABLIHSED state as illustrated in
the right hand side of the above diagram.
CLOSE_WAIT state:

changed from ESTABLISHED state by receiving FIN from the peer. Transmits ACK for FIN

 - 19 -

and creates closed interrupt at MCU. By processing the interrupt, MCU executes the close
command to the Ethernet I/F of EH-8100-Lx and completes the connection close. But, if data
to be sent still are left, that is TW_PR value is not equal to TA_PR value, you should not issue
the close command but wait until timeout occurs or ignore close procedure and make progress
next step like sock_init command.

LAST_ACK state:
when close command is handed down by MCU, FIN is transmitted and stands by for ACK. If
no ACK is received, FIN Packet is re-transmitted. If no reply is received until timeout occurs,
it changes to CLOSED state.

TCP Data Transmission and Reception

Unlike UDP, TCP data transmission and reception is possible only after the connection set-up is
made. The Ethernet I/F of EH-8100-Lx has exclusive memory for data transmission and reception,
8KB for transmission and 8KB for reception. This memory can be set up as 1KB, 2KB, 4KB and
8KB by using RMSR (Rx data Memory Size Register) and TMSR (Tx data Memory Size Register).

TCP Transmission Memory Size Set-up
The Ethernet I/F of EH-8100-Lx transmission memory is comprised of 8KB in total, and the size
can be assigned for each channel through TMSR register. An example of TMSR and each memory
size is illustrated in the diagram below.
When the memory size from channel 0 exceeds 8KB, all ensuing memory is ignored.

TCP Data Transmission Process

 - 20 -

In order to execute TCP transmission, 4Byte pointer of Cx_TW_PR (Tx Write Pointer Register of
Channel x) and Cx_TA_PR (Tx Ack Pointer Register of Channel x) is used. Cx_TW_PR is the
pointer that writes the data to be transmitted from MCU, and Cx_TA_PR is the pointer that
completed transmission. Cx_TW_PR and Cx_TA_PR become equal after connection set-up is made.
In active open, they are equally initialized under the sock_init command from MCU. In passive open,
one is initialized by the other. The difference between two of pointers become the actual FBS (free
buffer size). Data is recorded from Cx_TW_PR according to such size, and when the data recording
is complete, Cx_TW_PR is increased according to the size of the recorded data and executes the
send command.

Pointer Management during TCP Transmission

Above diagram illustrates the change in Cx_TW_PR and Cx_TA_PR when actual data transmission
is made after 2KB of transmission memory is set at CH0.

TCP Reception Memory Size Set-up

Receiving memory of the Ethernet I/F of EH-8100-Lx has the same structure of the transmission

 - 21 -

memory and operated in same method.
The memory is comprised of 8KB in total, and the size can be assigned for each channel through
RMSR (Rx data Memory Size register). An example of RMSR and each memory size is illustrated
in the diagram below.
When the memory size from channel 0 exceeds 8KB, all ensuing memory is ignored.

Reception Memory Allocation

TCP Data Reception Process

TCP data reception by the Ethernet I/F of EH-8100-Lx is illustrated in the above diagram. In the
Ethernet I/F of EH-8100-Lx, when data is received from the peer, the data is recorded as reception
memory from Cx_RW_PR (Rx Write Pointer Register of Chnnel x), Cx_RW_PR is increased
according to the size of the received data when the reception is complete, and then MCU is
interrupted to report a data reception. Through interrupt or polling, MCU compares Cx_RW_PR and
Cx_RR_PTR (Rx Read Pointer Register of Channel x), and when data reception is observed, the
size of the received data is first calculated and Cx_RR_PR is increased after the data is read and
processed from Cx_RR_PR. Finally, recv command is executed to report that the processing of the
received data is complete.

 - 22 -

Pointer Management during TCP Reception

Above diagram illustrates the change in Cx_RW_PR and Cx_RR_PR when actual data is received
after 2KB of reception memory is set at CH0.

TCP Retry Time Adjustment

The Ethernet I/F of EH-8100-Lx uses IRTR (Initial Retry Time-value Register) and RCR (Retry
Count Register) to adjust the timer to be used in re-transmission of TCP.
TCP re-transmission is executed when the initial retry timer expires, and the retry timer is reset at
the value of * 2. Such a process is repeated according to the RCR value, and in the last retry, timeout
interrupt occurs and then gives up.

Formula of timeout value:
IRTR: Initial Retry Time-value Register
RCR: Retry Count Register
IRTR * 100us = start timeout second
Total timeout value until give-up = (IRTR * 100us) *(2RCR-1)

Internally, the default value of IRTR is 0x07D0 and RCR is 0x06, where initial retry takes place at
200ms and the retry frequency becomes 6. Therefore, unless these registers are revised, retry is
made at 200ms, 600ms, 1400ms, 3000ms, 6200ms, 12600ms each and gives up at the final
12600ms.

3. UDP Protocol

UDP is a connectionless protocol. No connection set-up or termination process is needed, thereby
creating lesser load.

UDP Initialization Process

In order to use UDP, the Cx_SOPR (Socket Option/Protocol register of Channel x) protocol field of
the corresponding channel needs to be set as SOCK_DGRAM(0x02) before socket initialization.
Unlike TCP, data transmission and reception is possible at UDP without any connection set-up
process.

UDP Data Transmission and Reception

 - 23 -

UDP transmission is activated similarly to TCP. All data received at its port can be received, and
MCU needs to analyze the header information of the data to verify transmitting IP and port to
confirm the corresponding data before processing.
Set-up of transmission and reception memory size is identical to TCP.

UDP Data Transmission
UDP transmission is activated similarly to TCP. Calculating the free buffer size of the memory, data
copying and Cx_TW_PR are identical. The difference is the usage of Cx_TR_PR instead of
Cx_TA_PR.
Another difference is that destination IP and port need to be set. In other words, if the destination IP
and port set prior to this transmission are different to the destination IP and port to be used for the
transmission, the values need to be updated before executing the send command.

Pointer Management during UDP Transmission

Above diagram illustrates the change in Cx_TW_PR and Cx_TA_PR when actual data transmission
is made after 2KB of transmission memory is set at CH0.

 - 24 -

UDP Data Reception

UDP reception is similar to TCP reception. The difference is that the header information for UDP
processing is included in the received data in addition to the data. The header is structured as below.

TLEN SIP SPort UDP data
0 2 4 6 8 xx

The header is comprised of (1) TLEN Field displaying the size of 2Byte Header + data, (2) 4Byte
SIP displaying the sender IP that transmitted UDP data, and (3) SPort displaying the sender Port.
MCU uses such information to determine whether the data needs to be processed by MCU before
processing.

Above diagram illustrates the MCU processing flow for UDP data. Excluding the header processing
for the UDP data, the basic flow is identical to TCP reception.

UDP Reception Memory Management for Each Channel

At UDP reception buffer, many different data may exist between Cx_RW_PR and Cx_RR_PR.
Therefore, the header information is used to differentiate and process such data. Above diagram
illustrates the process where 2 UDP’s receive the data and processed by MCU.

 - 25 -

4. IP Layer RAW Mode

the Ethernet I/F of EH-8100-Lx IPL_RAW(IP Layer RAW) mode is used in processing protocols
(e.g., ICMP, etc.) other than TCP and UDP as provided by the Ethernet I/F of EH-8100-Lx.

IPL_RAW Mode Initialization Process

In order to use the Ethernet I/F of EH-8100-Lx IPL_RAW Mode, the protocol value of the IP Layer
to be used (e.g., 0x01 in case of ICMP) needs to be set as Cx_IPR (IP Protocol Register of Channel
x), and the Cx_SOPR (Socket Option/Protocol register of Channel x) protocol field of the
corresponding channel needs to be set as SOCK_IPL_RAW(0x03) before socket initialization
(sock_init command). As in UDP, data transmission and reception is possible when the
corresponding channel is initialized.

IPL_RAW Mode Data Transmission and Reception

Transmission in IPL_RAW Mode is activated similarly to UDP, and the reception is made for the
same Protocol data as Cx_IPR.

IPL_RAW Mode Data Transmission

For reception in IPL_RAW Mode, calculating the free buffer size of the reception memory, data
copying and usage of Cx_TW_PR, Cx_TR_PR are identical to UDP, and the destination IP needs to
be set. Unlike UDP, however, no port needs to be set. As in UDP, if the destination IP set prior to
this transmission is different to the destination IP to be used for the transmission, the value need to
be updated before executing the send command.

 - 26 -

IPL_RAW Transmission Pointer Management

Above diagram illustrates the change in Cx_TW_PR and Cx_TA_PR when actual data transmission
is made after 2KB of transmission memory is set at CH0.

IPL_RAW Mode Data Reception

Reception in the Ethernet I/F of EH-8100-Lx IPL_RAW Mode is similar to UDP reception. As in
UDP, header information is included in the received data in addition to the data, and the header is
structure as below.

TLEN SIP UDP data
0 2 6 xx

The header information IPL_RAW mode contains (1) TLEN identical to UDP TLEN displaying the
total length of data size + header length, and (2) 4Byte SIP displaying the sender IP that transmitted
UDP data.
Both are used with Cx_RW_PR and Cx_RR_PR to process the received data. The process is made
identically to the UDP reception data processing.

 - 27 -

5. MAC Layer RAW Mode

In MACL_RAW (MAC Layer RAW) mode, the Ethernet I/F of EH-8100-Lx is used as other
general NIC (Network Interface Controller), and the Ethernet I/F of EH-8100-Lx TCP/IP module is
not used in this mode.
When TCP/IP is used through the EH-8100-Lx, the number of channels is limited to 4.
For systems using more than 4 channels simultaneously, the Ethernet I/F of EH-8100-Lx uses this
mode and S/W TCP/IP can be processed in the higher drive.
If MAC Layer RAW Mode is used, the Ethernet I/F of EH-8100-Lx uses Channel 0 only and other
channels are ignored.

MACL_RAW Mode Initialization Process

In MACL_RAW Mode, data transmission and reception is possible after the protocol field of
C0_SOPR (Socket Option/Protocol register of Channel 0) is set as SOCK_MACL_RAW(0x04) and
by using sock_init command of channel 0. Option values to be set at C0_SOPR include ERR, B, P
bit. ERR bit allows the reception of Packet with error, B bit allows the reception of Broadcast Packet,
and P bit allows the reception of Promiscuous Packet (Packet with specific MAC address).

MACL_RAW Mode Data Transmission and Reception

Transmission in MACL_RAW Mode is activated similarly to UDP, and the data reception is made
according to C0_SOPR.

MACL_RAW Mode Data Transmission Management

MACL_RAW Mode’s transmission memory management uses a single Channel only, which is
Channel 0, and uses 8KB of transmission memory.

MACL_RAW Transmission Memory Management

MACL_RAW Mode Data Transmission

For transmission in MACL_RAW Mode, calculating the free buffer size of the transmission
memory, data copying, and usage of C0_TW_PR, C0_TR_PR are identical to UDP, but unlike UDP,
no destination IP and Port set up is needed. In other words, in MACL_RAW Mode, all protocol
processing is made by MCU, and such information is included in the transmission Frame.

 - 28 -

MACL_RAW Mode Data Reception Management

MACL_RAW Reception Memory Management

MACL_RAW Mode’s Reception memory management uses 1 channel only, therefore all 8KB is
allocated to Channel 0. Above diagram illustrates the processing of 2 data after C0_WR_PR and
C0_RR_PR are equally initialized as 0x00000200.

MACL_RAW Mode Data Reception

In the Ethernet I/F of EH-8100-Lx MACL_RAW Mode, the reception of the set packets are made
according to the receive options as set at C0_SOPR. As in UDP, header information is included in
the received data in addition to the data, and the header is structure as below.

TLEN STT MAC RAW data
0 2 3 xx

As shown in the above diagram, the header information IPL_RAW mode contains (1) TLEN
identical to UDP TLEN displaying the total length of data and header length, and (2) 1 Byte STT
displaying the status of the received data. The description of the received data is recorded at STT
Byte as below.

 - 29 -

7 6 5 4 3 2 1 0 Meaning

1 x x x x x x x Destination H/W Address of the received packet is
identical to SHAR (Source H/W Address Register)

x x 1 x x x x x Reception of Broadcasting Packet
x x x 1 x x x x Reception of Packet with Error

As in UDP, the reception module uses C0_RW_PR and C0_RR_PR to process the received data.
The process is identical to UDP received data process.

 - 30 -

Appendix A. Programming Guide

1. Notes when executing “Close command”

A. Recommendations before executing “Close command” When you execute “close command” in

the Ethernet I/F of EH-8100-Lx, check whether “Tx buffer” is empty first.

Only when it is empty, execute “close command”. If you execute “close command” with “Tx

buffer” filled, there could be problems of flooding of FIN and ACK packet

.

B. Recommendations after executing “Close command” You can use both “interrupt method” and

“polling method” to check whether right sockets are closed properly after executed “close

command” at the Ethernet I/F of EH-8100-Lx. In “interrupt method”, you can confirm normal

socket close by checking “interrupt status register”, and in “polling method”, you can verify socket

close by reading socket status register of currently handling channels periodically. One more thing

to be cautious is that when you execute “close command” in the Ethernet I/F of EH-8100-Lx, socket

status becomes “closed (0x00)” for a certain time. But it will return to its normal status shortly. So

just disregard the phenomena and proceed to your normal steps.

2. Notes when setting “MSS maximum value”

Maximum MSS value of the Ethernet I/F of EH-8100-Lx is limited to 1460 in UDP or IP Raw mode.

Therefore, do not set an MSS value greater than 1460 in UDP or IP Raw mode.

3. Notes when processing data in “IP Raw mode”

Don’t use the value as a data length. The data length value which was received in IP Raw mode

should be recalculated by adding 4 bytes for use.

4. Notes when handling “Shadow register”

As internal pointer register is 4 bytes and data bus for CPU is 1 byte in the Ethernet I/F of

EH-8100-Lx, there is Shadow register in order not to update pointer register by operations of the

Ethernet I/F of EH-8100-Lx while CPU is reading pointer register. If interrupts are generated during

reading Shadow register, Shadow register value can be changed. To prevent this unexpected

function, we recommend you to disable external Interrupt while reading Shadow register.

